تركز معظم مهام الإجابة على معظم الأسئلة على التنبؤ بإجابات ملموسة، مثل الكيانات المسماة.يمكن تحقيق هذه المهام عادة عن طريق فهم السياقات دون وجود معلومات إضافية مطلوبة.في قراءة الفهم من المهمة المعنى التجريدي (إعادة التقييم)، يتم تقديم الإجابات المجردة.لفهم معاني مجردة في السياق، المعرفة الإضافية ضرورية.في هذه الورقة، نقترح نهج يهدف إلى أن يشرف رصيد بيرت المدرب مسبقا كموارد معرفة مسبقة.وفقا للنتائج، فإن نهجنا باستخدام بيرت المدربة مسبقا تفوقت على الأساس.إنه يدل على أنه يمكن استخدام Abeddings Token Bertken المدربة مسبقا كمعرفة إضافية لفهم المعاني المجردة في الإجابة على الأسئلة.
Most question answering tasks focuses on predicting concrete answers, e.g., named entities. These tasks can be normally achieved by understanding the contexts without additional information required. In Reading Comprehension of Abstract Meaning (ReCAM) task, the abstract answers are introduced. To understand abstract meanings in the context, additional knowledge is essential. In this paper, we propose an approach that leverages the pre-trained BERT Token embeddings as a prior knowledge resource. According to the results, our approach using the pre-trained BERT outperformed the baselines. It shows that the pre-trained BERT token embeddings can be used as additional knowledge for understanding abstract meanings in question answering.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه الورقة المهمة المشتركة Semeval-2021 4: قراءة الفهم من معنى مجردة (Recam). تم تصميم هذه المهمة المشتركة للمساعدة في تقييم قدرة الآلات في تمثيل وفهم مفهوم مجردة. يتعين على النظام المقابل، من المتوقع أن يختار نظام المشاركة، الإجابة الصحيحة من خ
تصف هذه الورقة النظام الفائز ل SubTask 2 والنظام الموضح الثاني لبرنامج التعرية الفرعية 1 في مهمة Semeval 2021 4: قراءة القراءة من معنى مجردة.نقترح استخدام جهاز تمييز Electra المصدر الذي يزعجني اختيار أفضل كلمة مجردة من خمسة مرشحين.يتم إدخال آلية الاه
تصف هذه الورقة نظامنا للمهمة 4 من Semeval-2021: قراءة الفهم من معنى مجردة (Recam).شاركنا في جميع المهام الفرعية حيث كان الهدف الرئيسي هو التنبؤ بكلمة مجردة مفقودة من بيان.نحن نضرب نماذج اللغة الملثمين المدربة مسبقا وهي بيرت وألبرت واستخدمت فرقة لهؤلا
تصف هذه الورقة نظامنا للحصول على مهمة Semeval-2021 4: قراءة الفهم من معنى مجردة.لإنجاز هذه المهمة، نستخدم الهندسة المعمارية لشبكة إيلاءات الرسوم البيانية المعززة للمعرفة مع استراتيجية تحويل الفضاء الدلالي الردد.إنه يرفع المعرفة غير المتجانسة لتعلم ال
إن التنبؤ بمستوى تعقيد كلمة أو عبارة تعتبر مهمة صعبة.يتم التعرف عليه حتى كخطوة حاسمة في العديد من تطبيقات NLP، مثل إعادة ترتيب النصوص ومبسط النص.تعامل البحث المبكر المهمة بمثابة مهمة تصنيف ثنائية، حيث توقعت النظم وجود تعقيد كلمة (معقد مقابل غير معقدة