تستخدم منصات الشبكة الاجتماعية عموما لمشاركة المحتوى الإيجابي والبناء والرائعة. ومع ذلك، في الآونة الأخيرة، غالبا ما يتعرض الناس على المحتوى المرفوض مثل التهديد وهجمات الهوية أو خطاب الكراهية أو الإهانات أو النصوص الفاحشة أو الملاحظات الهجومية أو البلطجة. يركز العمل الحالي على كشف الكلام السام على التصنيف الثنائي أو على التمييز الخطاب السام بين مجموعة صغيرة من الفئات. تصف هذه الورقة النظام الذي اقترحه فريق Cisco for Semeval-2021 المهمة 5: الكشف عن الأمور السامة، أول مهمة مشتركة تركز على اكتشاف المواقف في النص الذي يعزى إلى سميته، باللغة الإنجليزية. نحن نقترب من هذه المشكلة في المقام الأول بطريقتين: نهج علامات التسلسل ونهج تحليل التبعية. في نهج علامات التسلسل لدينا، نعلم كل رمز رمزي في جملة تحت مخطط وضع علامات معينة. أثبتت بنية الأداء الخاصة بنا في هذا النهج أيضا أنها أفضل بنية أداء لدينا بشكل عام مع درجة F1 من 0.6922، وبالتالي وضع 7 لنا في مرحلة التقييم النهائية المتصدرين. نستكشف أيضا نهج تحليل التبعية حيث استخرفنا يمتد من عقوبة الإدخال تحت إشراف حدود المستهدفة المستهدفة وترتيب تمديدنا باستخدام نموذج بيافين. أخيرا، نقدم أيضا تحليلا مفصلا لنتائجنا وأداء النموذج في ورقنا.
Social network platforms are generally used to share positive, constructive, and insightful content. However, in recent times, people often get exposed to objectionable content like threat, identity attacks, hate speech, insults, obscene texts, offensive remarks or bullying. Existing work on toxic speech detection focuses on binary classification or on differentiating toxic speech among a small set of categories. This paper describes the system proposed by team Cisco for SemEval-2021 Task 5: Toxic Spans Detection, the first shared task focusing on detecting the spans in the text that attribute to its toxicity, in English language. We approach this problem primarily in two ways: a sequence tagging approach and a dependency parsing approach. In our sequence tagging approach we tag each token in a sentence under a particular tagging scheme. Our best performing architecture in this approach also proved to be our best performing architecture overall with an F1 score of 0.6922, thereby placing us 7th on the final evaluation phase leaderboard. We also explore a dependency parsing approach where we extract spans from the input sentence under the supervision of target span boundaries and rank our spans using a biaffine model. Finally, we also provide a detailed analysis of our results and model performance in our paper.
المراجع المستخدمة
https://aclanthology.org/
نستفيد من BLSTM مع الاهتمام لتحديد المواقف السامة في النصوص.نستكشف أبعاد مختلفة تؤثر على أداء النموذج.البعد الأول الذي تم استكشافه هو المجموعة السامة يتم تدريب النموذج.إلى جانب مجموعة البيانات المقدمة، نستكشف قدرة تحويل 5 مجموعات ذات صلة سامة مختلفة،
تتطلب مهمة الكشف عن المسافة السامة في Semeval-2021 المشاركين الذين يتعين على المشاركين التنبؤ بالوظائف السامة التي كانت مسؤولة عن الملصق السام للوظائف.يمكن معالجة المهمة كمصموع تسلسل إشراف، باستخدام بيانات التدريب مع يمتد سامة الذهب المقدمة من المنظم
تقدم هذه المقالة وصف نظام فريق المحور، الذي يفسر العمل ذي الصلة والنتائج التجريبية لمشاركة فريقنا في مهمة Semeval 2021 5: الكشف السام يمتد.تأتي بيانات هذه المهمة المشتركة من بعض المشاركات على الإنترنت.الهدف المهمة هو تحديد المحتوى السام الوارد في هذه
تم استخدام الشبكات العصبية المتكررة على نطاق واسع في مهام معالجة اللغة الطبيعية المختلفة (NLP) مثل تصنيف النص وعلامات التسلسل والترجمة الآلية.ذاكرة طويلة الأجل طويلة الأجل (LSTM)، وهي وحدة خاصة من RNN، لديها فائدة من حفظ المعلومات السابقة وحتى المستق
مع النمو السريع في التكنولوجيا، شهد نشاط وسائل التواصل الاجتماعي طفرة في جميع الفئات العمرية.من المستحيل الإنساني التحقق من جميع التغريدات والتعليقات والحالة يدويا ما إذا كانت تتبع إرشادات المجتمع المناسبة.يتم نشر الكثير من السمية بانتظام على منصات و