ترغب بنشر مسار تعليمي؟ اضغط هنا

تلخيص الزمني تدريجي في اجتماعات متعددة الأحزاب

Incremental temporal summarization in multi-party meetings

525   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذا العمل، نقوم بتطوير مجموعة بيانات للتلخيص الزمني الإضافي في حوار متعدد الأحزاب.نحن نستخدم نموذجا من الحشد المصدر بموجب نهج نموذج في الحلقة لجمع الملخصات ومقارنة البيانات مع ملخصات الخبراء.نحن نستفيد نموذج جيل السؤال لإنشاء أسئلة تلقائيا من الحوار، والذي يمكن استخدامه للتحقق من صحة مشاركة المستخدمين وربما لفت انتباه المستخدم أيضا إلى المحتويات ثم تحتاج إلى تلخيص.نقوم بعد ذلك بتطوير العديد من النماذج لتوليد موجز موجز في السيناريو الزمني الإضافي.نقوم بإجراء تحليل مفصل للنتائج وإظهار أنه بما في ذلك السياق الماضي في الجيل الموجز غلة ملخصات أفضل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أصبح التعرف على العاطفة في محادثة متعددة الأحزاب (ermc) شعبية بشكل متزايد كقاعدة بحثية ناشئة في معالجة اللغة الطبيعية.يركز البحث المسبق على استكشاف معلومات متتابعة ولكن يتجاهل هياكل المحادثات.في هذه الورقة، يمكننا التحقيق في أهمية هياكل الخطاب في الت عامل مع الإشارات السياقية الإعلامية والمعلومات الخاصة بالمتكلات الخاصة ب armc.تحقيقا لهذه الغاية، نقترح علما رسميا في رسم بياني (ERMC-DISGCN) ل ERMC.على وجه الخصوص، نقوم بتصميم الأزلاء العلائقية إلى رافعة تبعية المتكلم الذاتي للواقعاء نشر معلومات سياقية.علاوة على ذلك، فإننا نستنفذ عن مراقبة بوابات لاختيار إشارات أكثر إفادة ل armc من التحويلات المعالين.تظهر النتائج التجريبية طريقة أن أسلوبنا تتفوق على خطوط أساس متعددة، مما يوضح أن هياكل الخطاب ذات قيمة كبيرة ل armc.
إن السماح للمستخدمين بالتفاعل مع الملخصات المتعددة المستندات هو اتجاه واعد نحو تحسين وتخصيص النتائج الموجزة. تم اقتراح أفكار مختلفة للتلخيص التفاعلي في العمل السابق، لكن هذه الحلول متباينة للغاية ولا تضاهى. في هذه الورقة، نقوم بتطوير إطار تقييم نهاية إلى نهائي للتلخيص التفاعلي، مع التركيز على التفاعل القائم على التوسع، الذي يعتبر تتراكم المعلومات على طول جلسة مستخدم. يتضمن إطار عملنا إجراءات لجمع دورات المستخدم الحقيقية، وكذلك تدابير التقييم التي تعتمد على معايير تلخيص، ولكنها تتكيف مع تعكس التفاعل. جميع حلولنا ومواردنا متوفرة علنا ​​كمعيار، مما يسمح بمقارنة التطورات المستقبلية في تلخيص تفاعلي، وتحفز تقدم في تقييمها المنهجي. نوضح استخدام إطار العمل لدينا من خلال تقييم ومقارنة تطبيقات خط الأساس التي طورنا لهذا الغرض، والتي ستكون بمثابة جزء من معيارنا. تحفيز تجاربنا الواسعة وتحليلنا تصميم إطار التقييم المقترح ودعم صلاحيته.
كان الحمل الزائد المعلومات أحد التحديات المتعلقة بالمعلومات من الإنترنت. إنها ليست مسألة وصول المعلومات، بدلا من ذلك، تحول التركيز نحو جودة البيانات المستردة. لا سيما في مجال الأخبار، تقرير منافذ متعددة عن أحداث الأخبار نفسها ولكن قد يختلف في التفاصي ل. يعتبر هذا العمل أن منافذ أخبار مختلفة من المرجح أن تختلف في أساليب الكتابة واختيار الكلمات، وتقترح طريقة لاستخراج الجمل بناء على معلوماتها الرئيسية من خلال التركيز على المرادفات المشتركة في كل جملة. تحاول طريقتنا أيضا تقليل التكرار من خلال التجميع الهرمي وترتيب جمل مختارة على TransBert المقترحة. تشير النتائج إلى أن الإطار المقترح غير المعدل بنجاح يحسن التغطية والتماسك، وفي الوقت نفسه، يقلل من التكرار للحصول على ملخص تم إنشاؤه. علاوة على ذلك، نظرا لعملية الحصول على DataSet، نقترح أيضا طريقة تحسين البيانات لتخفيف مشاكل النصوص غير المرغوب فيها، والتي تنجم عن عملية تجريف تلقائي.
نوضح القدرات المعتدلة لنظام روبوت الاستماع اليقظ متعدد الأحزاب عندما يتحدث عدة أشخاص في المنعطفات.نظام الاستماع اليقظي التقليدي الخاص بنا يولد ردود المستمع مثل Backchannels، وكرر، وتفصيل الأسئلة، والتقييمات.في هذه الورقة، فإن ردود الروبوت الإضافية ال تي تحفز مستخدم الاستماع (مشارك جانبي) لتصبح أكثر مشاركة في الحوار.الردود الإضافية تثير التقييمات والأسئلة من المشاركين الجانبي، مما يجعل الحوار أكثر تعاطفا وحيوية.
نقدم طريقة لتوليد ملخصات مقارنة تسليط الضوء على أوجه التشابه والتناقضات في وثائق المدخلات. التحدي الرئيسي في إنشاء هذه الملخصات هو عدم وجود بيانات تدريبية متوازية كبيرة مطلوبة لتدريب أنظمة التلخيص النموذجية. تحقيقا لهذه الغاية، نقدم نهج جيل مختلفي مس توحى من أنظمة المفاهيم التقليدية إلى النص. لتمكين المقارنة الدقيقة بين المصادر المختلفة، يتعلم النموذج أولا استخراج العلاقات ذات الصلة من وثائق المدخلات. يستخدم مكون تخطيط المحتوى المشغلين المحددين لتجميع هذه العلاقات بعد تحديد مجموعة فرعية للإدماج في ملخص. مكون إدراك السطح Lexicalizes هذه المعلومات باستخدام نموذج لغة تسقط النص. من خلال اختيار محتوى النمذجة بشكل منفصل وإدراكه، يمكننا تدريبها بشكل فعال مع التعليقات التوضيحية المحدودة. نفذنا واختبرنا النموذج في مجال التغذية والصحة - تنتشر بالتناسيل. مقارنة بالأساليب التقليدية، يؤدي إطارنا إلى تلخيص أكثر مخلصة وثيقة ومهمة الحساسة للتجميع - بينما يجري بطلاقة بنفس القدر.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا