تقدم هذه الورقة نتائجنا من المشاركة في المهمة المشتركة SMM4H 2021. تناولنا التعرف على الكيان المسمى (NER) وتصنيف النص.لمعالجة NER، استكشفنا Bilstm-CRF مع تضمين مخلجان مكدسة وميزات لغوية.حققنا في العديد من خوارزميات التعلم في الآلات (الانحدار اللوجستي، SVM والشبكات العصبية) لمعالجة تصنيف النص.يمكن التعميم مناهجنا المقترحة لغات مختلفة وقد أظهرنا فعاليتها للغة الإنجليزية والإسبانية.حققت تقارير تصنيف النص لدينا أداء تنافسي مع درجة F1 0.46 و 0.90 على تصنيف ADE (المهمة 1A) وتصنيف المهنة (المهمة 7A) على التوالي.في حالة NER، سجلت عمليات التقديمات لدينا درجة F1 من 0.50 و 0.82 على اكتشاف ADE SPAN (المهمة 1B) والكشف عن المهنة (المهمة 7 ب) على التوالي.
This paper presents our findings from participating in the SMM4H Shared Task 2021. We addressed Named Entity Recognition (NER) and Text Classification. To address NER we explored BiLSTM-CRF with Stacked Heterogeneous embeddings and linguistic features. We investigated various machine learning algorithms (logistic regression, SVM and Neural Networks) to address text classification. Our proposed approaches can be generalized to different languages and we have shown its effectiveness for English and Spanish. Our text classification submissions have achieved competitive performance with F1-score of 0.46 and 0.90 on ADE Classification (Task 1a) and Profession Classification (Task 7a) respectively. In the case of NER, our submissions scored F1-score of 0.50 and 0.82 on ADE Span Detection (Task 1b) and Profession span detection (Task 7b) respectively.
المراجع المستخدمة
https://aclanthology.org/
نتيجة للجمل غير المنظمة وبعض أخطاء أخطاء وإجراء أخطاء، فإن العثور على كيانات اسمه في بيئة صاخبة مثل وسائل التواصل الاجتماعي يستغرق المزيد من الجهد.يحتوي Parstwiner على أكثر من 250k Tokens، بناء على تعليمات قياسية مثل MUC-6 أو Conll 2003، تجمع من Twit
على الرغم من أن النماذج الكبيرة المدربة مسبقا (E.G.، Bert، Ernie، Xlnet، GPT3 وما إلى ذلك) قدمت أداء أعلى في النمذجة SEQ2SEQ، وغالبا ما تعوق عمليات نشرها في تطبيقات العالم الحقيقي بواسطة الحسابات المفرطة وطلب الذاكرة المعنية. بالنسبة للعديد من التطبي
تم دراسة التعرف على الكيان المسمى Nestate (NNER) على نطاق واسع، تهدف إلى تحديد جميع الكيانات المتداخلة من تمديدات محتملة (I.E.، واحد أو أكثر من الرموز المستمرة). ومع ذلك، فإن الدراسات الحديثة لأي نانر إما التركيز على مخططات العلامات الشاقة أو الاستفا
لتكون قادرا على مشاركة المعلومات القيمة في سجلات المرضى الإلكترونية (EPR)، يلزم تحديدها أولا لحماية خصوصية مواضيعهم. التعرف على الكيان المسمى والتصنيف (NERC) هو جزء مهم من هذه العملية. في السنوات الأخيرة، قامت نماذج اللغة للأغراض العامة المدربة مسبقا
تقدمت نماذج اللغة المحددة مثل بيرت حالة الفن للعديد من مهام NLP. لغات غنية بالموارد، لدى المرء الاختيار بين عدد من النماذج الخاصة باللغة، في حين أن النماذج متعددة اللغات تستحق الدراسة أيضا. هذه النماذج معروفة جيدا لأدائها Croadlingual، لكنها أظهرت أي