ترغب بنشر مسار تعليمي؟ اضغط هنا

HITRANS: شبكة محول هرمية للتعرف على الكيان المسمى المتداخل

HiTRANS: A Hierarchical Transformer Network for Nested Named Entity Recognition

315   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم دراسة التعرف على الكيان المسمى Nestate (NNER) على نطاق واسع، تهدف إلى تحديد جميع الكيانات المتداخلة من تمديدات محتملة (I.E.، واحد أو أكثر من الرموز المستمرة). ومع ذلك، فإن الدراسات الحديثة لأي نانر إما التركيز على مخططات العلامات الشاقة أو الاستفادة من الهياكل المعقدة، والتي تفشل في تعلم تمثيلات فعالة من جملة المدخلات مع كيانات متداخلة للغاية. بمعنى حدسي، ستساهم تمثيلات صريحة في نانر بسبب معلومات السياق الغنية التي تحتوي عليها. في هذه الدراسة، نقترح شبكة محول هرمية (HITRANS) للمهمة NNER، والتي تتحلل جملة الإدخال إلى تمثال متعدد الحبوب وتعزز التعلم التمثيل بطريقة هرمية. على وجه التحديد، نستخدم أول وحدة من المرحلة الأولى لتوليد تمثيلات تمتد عن طريق معلومات السياق التجميعية بناء على شبكة محول من أسفل إلى أعلى وهبوطا. ثم تم تصميم طبقة التنبؤ الملصق للتعرف على الكيانات المتداخلة هرمية، والتي تستكشف بشكل طبيعي التبعيات الدلالية بين تمديد مختلفة. تثبت تجارب مجموعات بيانات Genia و ACE-2004 و ACE-2005 و NNE أن طريقةنا المقترحة تحقق أداء أفضل بكثير من النهج التي من بين الفني.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

على الرغم من أن النماذج الكبيرة المدربة مسبقا (E.G.، Bert، Ernie، Xlnet، GPT3 وما إلى ذلك) قدمت أداء أعلى في النمذجة SEQ2SEQ، وغالبا ما تعوق عمليات نشرها في تطبيقات العالم الحقيقي بواسطة الحسابات المفرطة وطلب الذاكرة المعنية. بالنسبة للعديد من التطبي قات، بما في ذلك التعرف على الكيان المسمى (NER)، فإن مطابقة النتيجة الحديثة تحت الميزانية قد جذبت اهتماما كبيرا. رسم الطاقة من التقدم الأخير في تقطير المعرفة (دينار كويتي)، يعرض هذا العمل مخطط تقطير جديد لنقل المعرفة بكفاءة المستفادة من النماذج الكبيرة إلى نظيرها أكثر بأسعار معقولة. يسلط حلنا الضوء على بناء الملصقات البديلة من خلال خوارزمية K-Best Viterbi إلى معرفة تقطر من طراز المعلم. لإحداث المعرفة إلى حد ما في نموذج الطالب، نقترح خطة تقطير متعددة الحبيبات، التي تدمج عبر الانتروبي الصليب المشارك في مجال عشوائي مشروط (CRF) والتعلم الغامض. للتحقق من صحة فعالية اقتراحنا، أجرينا تقييم شامل على خمسة نير معايير، الإبلاغ عن مكاسب أداء المجلس عبر المجلس بالنسبة للفنون السابقة المتنافسة. نناقش نتائج الآراء بشكل أكبر لتشريح مكاسبنا.
نتيجة للجمل غير المنظمة وبعض أخطاء أخطاء وإجراء أخطاء، فإن العثور على كيانات اسمه في بيئة صاخبة مثل وسائل التواصل الاجتماعي يستغرق المزيد من الجهد.يحتوي Parstwiner على أكثر من 250k Tokens، بناء على تعليمات قياسية مثل MUC-6 أو Conll 2003، تجمع من Twit ter الفارسي.باستخدام معامل كابا في كوهين، فإن اتساق المعلقين هو 0.95، درجة عالية.في هذه الدراسة، نوضح أن بعض النماذج الحديثة تتحلل على هذه الشركات، وتدريب نموذج جديد باستخدام تعلم التحويل الموازي بناء على بنية بيرت.تظهر النتائج التجريبية أن النموذج يعمل بشكل جيد في الفارسية غير الرسمية وكذلك في الفارسية الرسمية.
الملخص نتخذ خطوة نحو معالجة تمثيل القارة الأفريقية في أبحاث NLP من خلال جلب مختلف أصحاب المصلحة من أصحاب المصلحة في إنشاء بيانات كبيرة متاحة للجمهور وعالية الجودة للتعرف على الكيان المسمى (NER) في عشرة لغات أفريقية.إننا نقوم بالتفصيل خصائص هذه اللغات لمساعدة الباحثين والممارسين على فهم التحديات التي يفرضونها على مهام NER.نقوم بتحليل مجموعات البيانات لدينا وإجراء تقييم تجريبي واسع النطاق للطرق الحكومية في جميع إعدادات التعلم الإشراف والنقل.أخيرا، نطلق سراح البيانات والرمز والنماذج لإلهام البحوث المستقبلية على الأفريقية NLP.1
تقدمت نماذج اللغة المحددة مثل بيرت حالة الفن للعديد من مهام NLP. لغات غنية بالموارد، لدى المرء الاختيار بين عدد من النماذج الخاصة باللغة، في حين أن النماذج متعددة اللغات تستحق الدراسة أيضا. هذه النماذج معروفة جيدا لأدائها Croadlingual، لكنها أظهرت أي ضا أداء تنافسي في اللغة في بعض المهام. نحن نعتبر نماذج أحادية اللغات متعددة اللغات من منظور النصوص التاريخية، وعلى وجه الخصوص للنصوص المخصبة بالملاحظات الافتتاحية: كيف تتعامل نماذج اللغة مع المحتوى التاريخي والتحرير في هذه النصوص؟ نقدم مجموعة بيانات جديدة للتعرف على كيان جدد للهولندية بناء على تقارير الشركة الشرقية في الهند التابعة للشرحة في القرن 17 و 18th والتي تمتد مع الملاحظات التحريرية الحديثة. تؤكد تجاربنا مع نماذج اللغة المحددة مسبقا متعددة اللغات والهولندية القدرات crosslingual من النماذج متعددة اللغات مع إظهار أن جميع النماذج اللغوية يمكنها الاستفادة من البيانات المختلطة المختلطة. على وجه الخصوص، تدمج نماذج اللغة بنجاح ملاحظات لتنبؤ الكيانات في النصوص التاريخية. نجد أيضا أن النماذج متعددة اللغات تتفوق على نماذج أحادية الألوان على بياناتنا، ولكن هذا التفوق مرتبط بالمهمة في متناول اليد: تفقد النماذج متعددة اللغات مصلحتها عند مواجهتها بمهام أكثر دلالة.
يدل العمل الحالي في التعرف على الكيان المسمى (NER) أن تقنيات تكبير البيانات يمكن أن تنتج نماذج أكثر قوة.ومع ذلك، تركز معظم التقنيات الموجودة على زيادة البيانات داخل المجال في سيناريوهات الموارد المنخفضة حيث تكون البيانات المشروحة محدودة للغاية.في هذا العمل، نأخذ هذا الاتجاه البحثي إلى المعاكس ودراسة تكبير بيانات المجال عبر المجال لمهمة NER.نحن نبحث في إمكانية الاستفادة من البيانات من مجالات الموارد العالية من خلال إسقاطها في مجالات الموارد المنخفضة.على وجه التحديد، نقترح بنية عصبية رواية لتحويل تمثيل البيانات من الموارد العالية إلى مجال موارد منخفضة من خلال تعلم الأنماط (مثل الأناقة والضوضاء والاختصارات، وما إلى ذلك) في النص الذي يميزها ومساحة ميزة مشتركةحيث يتماشى كلا المجالين.نقوم بتجربة مجموعات بيانات متنوعة وإظهار أن تحويل البيانات إلى تمثيل مجال الموارد المنخفض يحقق تحسينات كبيرة على استخدام البيانات فقط من مجالات الموارد العالية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا