ﻻ يوجد ملخص باللغة العربية
We study a means of creating multiparticle entanglement of neutral atoms using pairwise controlled dipole-dipole interactions in a three dimensional optical lattice. For tightly trapped atoms the dipolar interaction energy can be much larger than the photon scattering rate, and substantial coherent evolution of the two-atom state can be achieved before decoherence occurs. Excitation of the dipoles can be made conditional on the atomic states, allowing for deterministic generation of entanglement. We derive selection rules and a figure-of-merit for the dipole-dipole interaction matrix elements, for alkali atoms with hyperfine structure and trapped in well localized center of mass states. Different protocols are presented for implementing two-qubits quantum logic gates such as the controlled-phase and swap gate. We analyze the fidelity of our gate designs, imperfect due to decoherence from cooperative spontaneous emission and coherent couplings outside the logical basis. Outlines for extending our model to include the full molecular interactions potentials are discussed.
We present a detailed analysis and design of a neutral atom quantum logic device based on atoms in optical traps interacting via dipole-dipole coupling of Rydberg states. The dominant physical mechanisms leading to decoherence and loss of fidelity ar
We study the effective dipole-dipole interactions in ultracold quantum gases on optical lattices as a function of asymmetry in confinement along the principal axes of the lattice. In particular, we study the matrix elements of the dipole-dipole inter
We have observed Stueckelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an externally applied radio-frequency field. The oscillating RF field brings the interaction between cold Rydberg atoms in two separated volumes in
Due to their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multi-qubit Rydberg-blockade gates which involve both many
Radio-frequency (rf) fields in the MHz range are used to induce resonant energy transfer between cold Rydberg atoms in spatially separated volumes. After laser preparation of the Rydberg atoms, dipole-dipole coupling excites the 49s atoms in one cyli