ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio-frequency driven dipole-dipole interactions in spatially separated volumes

170   0   0.0 ( 0 )
 نشر من قبل Atreju Tauschinsky
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio-frequency (rf) fields in the MHz range are used to induce resonant energy transfer between cold Rydberg atoms in spatially separated volumes. After laser preparation of the Rydberg atoms, dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the second cylinder are transferred down to the 42p state. The energy exchanged between the atoms in this process is 33 GHz. An external rf-field brings this energy transfer into resonance. The strength of the interaction has been investigated as a function of amplitude (0-1 V/cm) and frequency (1-30 MHz) of the rf-field and as a function of a static field offset. Multi-photon transitions up to fifth order as well as selection rules prohibiting the process at certain fields have been observed. The width of the resonances has been reduced compared to earlier results by switching off external magnetic fields of the magneto-optical trap, making sub-MHz spectroscopy possible. All features are well reproduced by theoretical calculations taking the strong ac-Stark shift due to the rf-field into account.



قيم البحث

اقرأ أيضاً

We have observed Stueckelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an externally applied radio-frequency field. The oscillating RF field brings the interaction between cold Rydberg atoms in two separated volumes in to resonance. We observe multi-photon transitions when varying the amplitude of the RF-field and the static electric field offset. The angular momentum states we use show a quadratic Stark shift, which leads to a fundamentally different behavior than linearly shifting states. Both cases are studied theoretically using the Floquet approach and are compared. The amplitude of the sidebands, related to the interaction strength, is given by the Bessel function in the linearly shifting case and by the generalized Bessel function in the quadratically shifting case. The oscillatory behavior of both functions corresponds to Stueckelberg oscillations, an interference effect described by the semi-classical Landau-Zener-Stueckelberg model. The measurements prove coherent dipole-dipole interaction during at least 0.6 micro-seconds.
We have observed resonant energy transfer between cold Rydberg atoms in spatially separated cylinders. Resonant dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the second cylinder are transferred d own to the 42p state. We have measured the production of the 49p state as a function of separation of the cylinders (0 - 80 um) and the interaction time (0 - 25 us). In addition we measured the width of the electric field resonances. A full many-body quantum calculation reproduces the main features of the experiments.
We study a means of creating multiparticle entanglement of neutral atoms using pairwise controlled dipole-dipole interactions in a three dimensional optical lattice. For tightly trapped atoms the dipolar interaction energy can be much larger than the photon scattering rate, and substantial coherent evolution of the two-atom state can be achieved before decoherence occurs. Excitation of the dipoles can be made conditional on the atomic states, allowing for deterministic generation of entanglement. We derive selection rules and a figure-of-merit for the dipole-dipole interaction matrix elements, for alkali atoms with hyperfine structure and trapped in well localized center of mass states. Different protocols are presented for implementing two-qubits quantum logic gates such as the controlled-phase and swap gate. We analyze the fidelity of our gate designs, imperfect due to decoherence from cooperative spontaneous emission and coherent couplings outside the logical basis. Outlines for extending our model to include the full molecular interactions potentials are discussed.
Due to their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multi-qubit Rydberg-blockade gates which involve both many control qubits and many target qubits simultaneously. This is achieved by using strong microwave fields to dress nearby Rydberg states, leading to asymmetric blockade in which control-target interactions are much stronger than control-control and target-target interactions. The implementation of these multi-qubit gates can drastically simplify both quantum algorithms and state preparation. To illustrate this, we show that a 25-atom GHZ state can be created using only three gates with an error of 7.8%.
127 - Renato Higa , James F. Babb , 2018
In this work we present results of the dipole-dipole interactions between two neutrons, a neutron and a conducting wall, and a neutron between two walls. As input, we use dynamical electromagnetic dipole polarizabilities fitted to chiral EFT results up to the pion production threshold and at the onset of the Delta resonance. Our work can be relevant to the physics of confined ultracold neutrons inside bottles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا