ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric blockade and multi-qubit gates via dipole-dipole interactions

150   0   0.0 ( 0 )
 نشر من قبل Jeremy Young
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multi-qubit Rydberg-blockade gates which involve both many control qubits and many target qubits simultaneously. This is achieved by using strong microwave fields to dress nearby Rydberg states, leading to asymmetric blockade in which control-target interactions are much stronger than control-control and target-target interactions. The implementation of these multi-qubit gates can drastically simplify both quantum algorithms and state preparation. To illustrate this, we show that a 25-atom GHZ state can be created using only three gates with an error of 7.8%.



قيم البحث

اقرأ أيضاً

The dipole blockade phenomenon is a direct consequence of strong dipole-dipole interaction, where only single atom can be excited because the doubly excited state is shifted out of resonance. The corresponding two-body entanglement with non-zero conc urrence induced by the dipole blockade effect is an important resource for quantum information processing. Here, we propose a novel physical mechanism for realizing dipole blockade without the dipole-dipole interaction, where two qubits coupled to a cavity, are driven by a coherent field. By suitably chosen placements of the qubits in the cavity and by adjusting the relative decay strengths of the qubits and cavity field, we kill many unwanted excitation pathways. This leads to dipole blockade. In addition, we show that these two qubits are strongly entangled over a broad regime of the system parameters. We show that a strong signature of this dipole blockade is the bunching property of the cavity photons which thus provides a possible measurement of the dipole blockade. We present dynamical features of the dipole blockade without dipole-dipole interaction. The proposal presented in this work can be realized not only in traditional cavity QED, but also in non-cavity topological photonics involving edge modes.
90 - Xiao-Qiang Shao 2020
The resonant dipole-dipole interaction between highly excited Rydberg levels dominates the interaction of neutral atoms at short distances scaling as $1/r^3$. Here we take advantage of the combined effects of strong dipole-dipole interaction and mult ifrequency driving fields to propose one type of selective Rydberg pumping mechanism. In the computational basis of two atoms ${|00rangle, |01rangle,|10rangle,|11rangle}$, this mechanism allows $|11rangle$ to be resonantly pumped upwards to the single-excited Rydberg states while the transitions of the other three states are suppressed. From the perspective of mathematical form, we achieve an analogous F{o}ster resonance for ground states of neutral atoms. The performance of this selective Rydberg pumping is evaluated using the definition of fidelity for controlled-$Z$ gate, which manifests a characteristic of robustness to deviation of interatomic distance, fluctuation of F{o}ster resonance defect, and spontaneous emission of double-excited Rydberg states. As applications of this mechanism, we discuss in detail the preparation of the maximally entangled symmetric state for two atoms via ground-state blockade, and the maximally entangled antisymmetric state via engineered spontaneous emission, within the state-of-the-art experiments, respectively.
340 - L. Isenhower , M. Saffman , 2011
Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a $k$-atom controlled NOT (C$_k$NOT) neutral atom gate. Thi s gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only $2k+3$ or 5 Rydberg $pi$ pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for $k=35$.
We present a theoretical investigation of coherent dynamics of a spin qubit encoded in hyperfine sublevels of an alkali-metal atom in a far off-resonant optical dipole trap. The qubit is prepared in the clock transition utilizing the Zeeman states wi th zero projection of the spin angular momentum. We focus on various dephasing processes such as the residual motion of the atom, fluctuations of the trapping field and its incoherent scattering and their effects on the qubit dynamics. We implement the most general fully-quantum treatment of the atomic motion, so our results remain valid in the limit of close-to-ground-state cooling with low number of vibrational excitations. We support our results by comparison with an experiment showing reasonable correspondence with no fitting parameters.
We show that the dipole-dipole interaction between two Rydberg atoms can lead to substantial Abelian and non-Abelian gauge fields acting on the relative motion of the two atoms. We demonstrate how the gauge fields can be evaluated by numerical techni ques. In the case of adiabatic motion in a single internal state, we show that the gauge fields give rise to a magnetic field that results in a Zeeman splitting of the rotational states. In particular, the ground state of a molecular potential well is given by the first excited rotational state. We find that our system realises a synthetic spin-orbit coupling where the relative atomic motion couples to two internal two-atom states. The associated gauge fields are non-Abelian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا