ترغب بنشر مسار تعليمي؟ اضغط هنا

Pathwise Solution of a Class of Stochastic Master Equations

53   0   0.0 ( 0 )
 نشر من قبل Matthew R. James
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider an alternative formulation of a class of stochastic wave and master equations with scalar noise that are used in quantum optics for modelling open systems and continuously monitored systems. The reformulation is obtained by applying J.M.C. Clarks pathwise reformulation technique from the theory of classical nonlinear filtering. The pathwi



قيم البحث

اقرأ أيضاً

We present a closed form solution to the eigenvalue problem of a class of master equations that describe open quantum system with loss and dephasing but without gain. The method relies on the existence of a conserved number of excitation in the Hamil tonian part and that none of the Lindblad operators describe an excitation of the system. In the absence of dephasing Lindblad operators, the eigensystem of the Liouville operator can be constructed from the eigenvalues and eigenvectors of the effective non-Hermitian Hamiltonian used in the quantum jump approach. Op
We study the stability of quantum pure states and, more generally, subspaces for stochastic dynamics that describe continuously--monitored systems. We show that the target subspace is almost surely invariant if and only if it is invariant for the ave rage evolution, and that the same equivalence holds for the global asymptotic stability. Moreover, we prove that a strict linear Lyapunov function for the average evolution always exists, and latter can be used to derive sharp bounds on the Lyapunov exponents of the associated semigroup. Nonetheless, we also show that taking into account the measurements can lead to an improved bound on stability rate for the stochastic, non-averaged dynamics. We discuss explicit examples where the almost sure stability rate can be made arbitrary large while the average one stays constant.
237 - Martin Fraas 2014
We derive an adiabatic theory for a stochastic differential equation, $ varepsilon, mathrm{d} X(s) = L_1(s) X(s), mathrm{d} s + sqrt{varepsilon} L_2(s) X(s) , mathrm{d} B_s, $ under a condition that instantaneous stationary states of $L_1(s)$ are als o stationary states of $L_2(s)$. We use our results to derive the full statistics of tunneling for a driven stochastic Schr{o}dinger equation describing a dephasing process.
We establish the existence and uniqueness of local strong pathwise solutions to the stochastic Boussinesq equations with partial diffusion term forced by multiplicative noise on the torus in $mathbb{R}^{d},d=2,3$. The solution is strong in both PDE a nd probabilistic sense.In the two dimensional case, we prove the global existence of strong solutions to the Boussinesq equations forced by additive noise using a suitable stochastic analogue of a logarithmic Gronwalls lemma. After the global existence and uniqueness of strong solutions are established, the large deviation principle (LDP) is proved by the weak convergence method. The weak convergence is shown by a tightness argument in the appropriate functional space.
The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases ver y hard. An alternative method, employed especially in the modelling of transport in mesoscopic systems, consists in using {it local} master equations containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of local master equations based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا