ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential Stability of Subspaces for Quantum Stochastic Master Equations

108   0   0.0 ( 0 )
 نشر من قبل Tristan Benoist
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the stability of quantum pure states and, more generally, subspaces for stochastic dynamics that describe continuously--monitored systems. We show that the target subspace is almost surely invariant if and only if it is invariant for the average evolution, and that the same equivalence holds for the global asymptotic stability. Moreover, we prove that a strict linear Lyapunov function for the average evolution always exists, and latter can be used to derive sharp bounds on the Lyapunov exponents of the associated semigroup. Nonetheless, we also show that taking into account the measurements can lead to an improved bound on stability rate for the stochastic, non-averaged dynamics. We discuss explicit examples where the almost sure stability rate can be made arbitrary large while the average one stays constant.



قيم البحث

اقرأ أيضاً

Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl inear stochastic differential equations driven by Poisson and Wiener processes. This paper is devoted to the study of the invariant measures of quantum trajectories. Particularly, we prove that the invariant measure is unique under an ergodicity condition on the mean time evolution, and a purification condition on the generator of the evolution. We further show that quantum trajectories converge in law exponentially fast towards this invariant measure. We illustrate our results with examples where we can derive explicit expressions for the invariant measure.
133 - Wei Wang , A. J. Roberts 2008
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equat ions with cubic nonlinearity by artificial separating the system into two distinct slow-fast time parts. An averaging method and a deviation estimate show that the macroscopic reduced model should be a stochastic ordinary equation which includes the random effect transmitted from the microscopic timescale due to the nonlinear interaction. Numerical simulations of an example stochastic heat equation confirms the predictions of this stochastic modelling theory. This theory empowers us to better model the long time dynamics of complex stochastic systems.
233 - Martin Fraas 2014
We derive an adiabatic theory for a stochastic differential equation, $ varepsilon, mathrm{d} X(s) = L_1(s) X(s), mathrm{d} s + sqrt{varepsilon} L_2(s) X(s) , mathrm{d} B_s, $ under a condition that instantaneous stationary states of $L_1(s)$ are als o stationary states of $L_2(s)$. We use our results to derive the full statistics of tunneling for a driven stochastic Schr{o}dinger equation describing a dephasing process.
169 - Dustin Keys , Jan Wehr 2019
The paper studies a class of quantum stochastic differential equations, modeling an interaction of a system with its environment in the quantum noise approximation. The space representing quantum noise is the symmetric Fock space over L^2(R_+). Using the isomorphism of this space with the space of square-integrable functionals of the Poisson process, the equations can be represented as classical stochastic differential equations, driven by Poisson processes. This leads to a discontinuous dynamical state reduction which we compare to the Ghirardi-Rimini-Weber model. A purely quantum object, the norm process, is found which plays the role of an observer (in the sense of Everett [H. Everett III, Reviews of modern physics, 29.3, 454, (1957)]), encoding all events occurring in the system space. An algorithm introduced by Dalibard et al [J. Dalibard, Y. Castin, and K. M{o}lmer, Physical review letters, 68.5, 580 (1992)] to numerically solve quantum master equations is interpreted in the context of unravellings and the trajectories of expected values of system observables are calculated.
A coupled forward-backward stochastic differential system (FBSDS) is formulated in spaces of fields for the incompressible Navier-Stokes equation in the whole space. It is shown to have a unique local solution, and further if either the Reynolds numb er is small or the dimension of the forward stochastic differential equation is equal to two, it can be shown to have a unique global solution. These results are shown with probabilistic arguments to imply the known existence and uniqueness results for the Navier-Stokes equation, and thus provide probabilistic formulas to the latter. Related results and the maximum principle are also addressed for partial differential equations (PDEs) of Burgers type. Moreover, from truncating the time interval of the above FBSDS, approximate solution is derived for the Navier-Stokes equation by a new class of FBSDSs and their associated PDEs; our probabilistic formula is also bridged to the probabilistic Lagrangian representations for the velocity field, given by Constantin and Iyer (Commun. Pure Appl. Math. 61: 330--345, 2008) and Zhang (Probab. Theory Relat. Fields 148: 305--332, 2010) ; finally, the solution of the Navier-Stokes equation is shown to be a critical point of controlled forward-backward stochastic differential equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا