ترغب بنشر مسار تعليمي؟ اضغط هنا

Blocking light in compact Riemannian manifolds

96   0   0.0 ( 0 )
 نشر من قبل Benjamin Schmidt
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study compact Riemannian manifolds for which the light between any pair of points is blocked by finitely many point shades. Compact flat Riemannian manifolds are known to have this finite blocking property. We conjecture that amongst compact Riemannian manifolds this finite blocking property characterizes the flat metrics. Using entropy considerations, we verify this conjecture amongst metrics with nonpositive sectional curvatures. Using the same approach, K. Burns and E. Gutkin have independently obtained this result. Additionally, we show that compact quotients of Euclidean buildings have the finite blocking property. On the positive curvature side, we conjecture that compact Riemannian manifolds with the same blocking properties as compact rank one symmetric spaces are necessarily isometric to a compact rank one symmetric space. We include some results providing evidence for this conjecture.



قيم البحث

اقرأ أيضاً

We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifold s. Furthermore, we prove some vanishing and non-vanishing results and we highlight that the invariants may be used to distinguish different foliations on diffeomorphic manifolds.
In this paper, we completely classify all compact 4-manifolds with positive isotropic curvature. We show that they are diffeomorphic to $mathbb{S}^4,$ or $mathbb{R}mathbb{P}^4$ or quotients of $mathbb{S}^3times mathbb{R}$ by a cocompact fixed point f ree subgroup of the isometry group of the standard metric of $mathbb{S}^3times mathbb{R}$, or a connected sum of them.
187 - C. A. Morales , M. Vilches 2012
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate t o each 2-Riemannian manifold a unique torsion free compatible pseudoconnection. Using it we define a curvature for 2-Riemannian manifolds and study its properties. We also prove that 2-Riemannian pseudoconnections do not have Koszul derivatives. Moreover, we define stationary vector field with respect to a 2-Riemannian metric and prove that the stationary vector fields in $mathbb{R}^2$ with respect to the 2-Riemannian metric induced by the Euclidean product are the divergence free ones.
426 - Paola Piu , Elisabeth Remm 2012
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. We detail for the flag ma nifold $SO(5)/SO(2)times SO(2) times SO(1)$ what are the conditions for a metric adapted to the $mathbb{Z}_2^2$-symmetric structure to be naturally reductive.
We reinterpret the renormalized volume as the asymptotic difference of the isoperimetric profiles for convex co-compact hyperbolic 3-manifolds. By similar techniques we also prove a sharp Minkowski inequality for horospherically convex sets in $mathb b{H}^3$. Finally, we include the classification of stable constant mean curvature surfaces in regions bounded by two geodesic planes in $mathbb{H}^3$ or in cyclic quotients of $mathbb{H}^3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا