ترغب بنشر مسار تعليمي؟ اضغط هنا

Seiberg-Witten invariants on manifolds with Riemannian foliations of codimension 4

158   0   0.0 ( 0 )
 نشر من قبل Mehdi Lejmi
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifolds. Furthermore, we prove some vanishing and non-vanishing results and we highlight that the invariants may be used to distinguish different foliations on diffeomorphic manifolds.



قيم البحث

اقرأ أيضاً

118 - M. Kool 2013
The moduli space of stable pairs on a local surface $X=K_S$ is in general non-compact. The action of $mathbb{C}^*$ on the fibres of $X$ induces an action on the moduli space and the stable pair invariants of $X$ are defined by the virtual localizatio n formula. We study the contribution to these invariants of stable pairs (scheme theoretically) supported in the zero section $S subset X$. Sometimes there are no other contributions, e.g. when the curve class $beta$ is irreducible. We relate these surface stable pair invariants to the Poincare invariants of Durr-Kabanov-Okonek. The latter are equal to the Seiberg-Witten invariants of $S$ by work of Durr-Kabanov-Okonek and Chang-Kiem. We give two applications of our result. (1) For irreducible curve classes the GW/PT correspondence for $X = K_S$ implies Taubes GW/SW correspondence for $S$. (2) When $p_g(S) = 0$, the difference of surface stable pair invariants in class $beta$ and $K_S - beta$ is a universal topological expression.
A leafwise Hodge decomposition was proved by Sanguiao for Riemannian foliations of bounded geometry. Its proof is explained again in terms of our study of bounded geometry for Riemannian foliations. It is used to associate smoothing operators to foli ated flows, and describe their Schwartz kernels. All of this is extended to a leafwise version of the Novikov differential complex.
We introduce a new class of perturbations of the Seiberg-Witten equations. Our perturbations offer flexibility in the way the Seiberg-Witten invariants are constructed and also shed a new light to LeBruns curvature inequalities.
204 - Yuuji Tanaka 2014
In this article, we consider a gauge-theoretic equation on compact symplectic 6-manifolds, which forms an elliptic system after gauge fixing. This can be thought of as a higher-dimensional analogue of the Seiberg-Witten equation. By using the virtual neighbourhood method by Ruan, we define an integer-valued invariant, a 6-dimensional Seiberg-Witten invariant, from the moduli space of solutions to the equations, assuming that the moduli space is compact; and it has no reducible solutions. We prove that the moduli spaces are compact if the underlying manifold is a compact Kahler threefold. We then compute the integers in some cases.
219 - Paul A. Schweitzer 2009
Every open manifold L of dimension greater than one has complete Riemannian metrics g with bounded geometry such that (L,g) is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometr y of (L,g) suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the `bounded homology property, a semi-local property of (L,g) that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا