ﻻ يوجد ملخص باللغة العربية
We present a reduction procedure for gauge theories based on quotienting out the kernel of the presymplectic form in configuration-velocity space. Local expressions for a basis of this kernel are obtained using phase space procedures; the obstructions to the formulation of the dynamics in the reduced phase space are identified and circumvented. We show that this reduction procedure is equivalent to the standard Dirac method as long as the Dirac conjecture holds: that the Dirac Hamiltonian, containing the primary first class constraints, with their Lagrange multipliers, can be enlarged to an extended Dirac Hamiltonian which includes all first class constraints without any change of the dynamics. The quotienting procedure is always equivalent to the extended Dirac theory, even when it differs from the standard Dirac theory. The differences occur when there are ineffective constraints, and in these situations we conclude that the standard Dirac method is preferable --- at least for classical theories. An example is given to illustrate these features, as well as the possibility of having phase space formulations with an odd number of physical degrees of freedom.
A general-covariant statistical framework capable of describing classical fluctuations of the gravitational field is a thorny open problem in theoretical physics, yet ultimately necessary to understand the nature of the gravitational interaction and
The vacuum state -- or any other state of finite energy -- is not an eigenstate of any smeared (averaged) local quantum field. The outcomes (spectral values) of repeated measurements of that averaged local quantum field are therefore distributed acco
An approach that has been given promising results concerning investigations on the physics of graphene is the so-called reduced quantum electrodynamics. In this work we consider the natural generalization of this formalism to curved spaces. We employ
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role pla
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields.