ﻻ يوجد ملخص باللغة العربية
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields. Its most comprehensive example is metric-affine gauge theory on the category of natural bundles where gauge fields are general linear connections on a manifold $X$, classical Higgs fields are arbitrary pseudo-Riemannian metrics on $X$, and matter fields are spinor fields. In particular, this is the case of gauge gravitation theory.
Higgs fields are attributes of classical gauge theory on a principal bundle $Pto X$ whose structure Lie group $G$ if is reducible to a closed subgroup $H$. They are represented by sections of the quotient bundle $P/Hto X$. A problem lies in descripti
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields.
A new variational principle for General Relativity, based on an action functional $I/(Phi, abla)/$ involving both the metric $Phi/$ and the connection $ abla/$ as independent, emph{unconstrained/} degrees of freedom is presented. The extremals of $I/
We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using this we find new relations between co