ﻻ يوجد ملخص باللغة العربية
The article discusses the following frequently arising question on the spectral structure of periodic operators of mathematical physics (e.g., Schroedinger, Maxwell, waveguide operators, etc.). Is it true that one can obtain the correct spectrum by using the values of the quasimomentum running over the boundary of the (reduced) Brillouin zone only, rather than the whole zone? Or, do the edges of the spectrum occur necessarily at the set of ``corner high symmetry points? This is known to be true in 1D, while no apparent reasons exist for this to be happening in higher dimensions. In many practical cases, though, this appears to be correct, which sometimes leads to the claims that this is always true. There seems to be no definite answer in the literature, and one encounters different opinions about this problem in the community. In this paper, starting with simple discrete graph operators, we construct a variety of convincing multiply-periodic examples showing that the spectral edges might occur deeply inside the Brillouin zone. On the other hand, it is also shown that in a ``generic case, the situation of spectral edges appearing at high symmetry points is stable under small perturbations. This explains to some degree why in many (maybe even most) practical cases the statement still holds.
Let $$L_0=suml_{j=1}^nM_j^0D_j+M_0^0,,,,,D_j=frac{1}{i}frac{pa}{paxj}, quad xinRn,$$ be a constant coefficient first-order partial differential system, where the matrices $M_j^0$ are Hermitian. It is assumed that the homogeneous part is stron
We consider the operator $H={d^4dt^4}+{ddt}p{ddt}+q$ with 1-periodic coefficients on the real line. The spectrum of $H$ is absolutely continuous and consists of intervals separated by gaps. We describe the spectrum of this operator in terms of the Ly
We consider two-dimensional Pauli and Dirac operators with a polynomially vanishing magnetic field. The main results of the paper provide resolvent expansions of these operators in the vicinity of their thresholds. It is proved that the nature of the
We consider a smooth hyper-surface Z of a closed Riemannian manifold X. Let P be the Poisson operator associating to a smooth function on Z its harmonic extension on XZ. If A is a pseudo-differential operator on X of degree <3, we prove that B=P^* A
We prove that a solution of the Schrodinger-type equation $mathrm{i}partial_t u= Hu$, where $H$ is a Jacobi operator with asymptotically constant coefficients, cannot decay too fast at two different times unless it is trivial.