ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral theory of first-order systems: from crystals to Dirac operators

113   0   0.0 ( 0 )
 نشر من قبل Matania Ben Artzi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $$L_0=suml_{j=1}^nM_j^0D_j+M_0^0,,,,,D_j=frac{1}{i}frac{pa}{paxj}, quad xinRn,$$ be a constant coefficient first-order partial differential system, where the matrices $M_j^0$ are Hermitian. It is assumed that the homogeneous part is strongly propagative. In the nonhomegeneous case it is assumed that the operator is isotropic . The spectral theory of such systems and their potential perturbations is expounded, and a Limiting Absorption Principle is obtained up to thresholds. Special attention is given to a detailed study of the Dirac and Maxwell operators. The estimates of the spectral derivative near the thresholds are based on detailed trace estimates on the slowness surfaces. Two applications of these estimates are presented: begin{itemize} item Global spacetime estimates of the associated evolution unitary groups, that are also commonly viewed as decay estimates. In particular the Dirac and Maxwell systems are explicitly treated. item The finiteness of the eigenvalues (in the spectral gap) of the perturbed Dirac operator is studied, under suitable decay assumptions on the potential perturbation. end{itemize}



قيم البحث

اقرأ أيضاً

124 - Hynek Kovav{r}ik 2021
We consider two-dimensional Pauli and Dirac operators with a polynomially vanishing magnetic field. The main results of the paper provide resolvent expansions of these operators in the vicinity of their thresholds. It is proved that the nature of the se expansions is fully determined by the flux of the magnetic field. The most important novelty of the proof is a comparison between the spatial asymptotics of the zero modes obtained in two different manners. The result of this matching allows to compute explicitly all the singular terms in the associated resolvent expansions. As an application we show how the magnetic field influences the time decay of the associated wave-functions quantifying thereby the paramagnetic and diamagnetic effects of the spin.
In arXiv:1201.4067 and arXiv:1611.08030, Eyink and Shi and Chibbaro et al., respectively, formally derived an infinite, coupled hierarchy of equations for the spectral correlation functions of a system of weakly interacting nonlinear dispersive waves with random phases in the standard kinetic limit. Analogously to the relationship between the Boltzmann hierarchy and Boltzmann equation, this spectral hierarchy admits a special class of factorized solutions, where each factor is a solution to the wave kinetic equation (WKE). A question left open by these works and highly relevant for the mathematical derivation of the WKE is whether solutions of the spectral hierarchy are unique, in particular whether factorized initial data necessarily lead to factorized solutions. In this article, we affirmatively answer this question in the case of 4-wave interactions by showing, for the first time, that this spectral hierarchy is well-posed in an appropriate function space. Our proof draws on work of Chen and Pavlovi{c} for the Gross-Pitaevskii hierarchy in quantum many-body theory and of Germain et al. for the well-posedness of the WKE.
103 - Loic Le Treust 2017
This paper deals with the study of the two-dimensional Dirac operatorwith infinite mass boundary condition in a sector. We investigate the question ofself-adjointness depending on the aperture of the sector: when the sector is convexit is self-adjoin t on a usual Sobolev space whereas when the sector is non-convexit has a family of self-adjoint extensions parametrized by a complex number of theunit circle. As a byproduct of this analysis we are able to give self-adjointnessresults on polygones. We also discuss the question of distinguished self-adjointextensions and study basic spectral properties of the operator in the sector.
The article discusses the following frequently arising question on the spectral structure of periodic operators of mathematical physics (e.g., Schroedinger, Maxwell, waveguide operators, etc.). Is it true that one can obtain the correct spectrum by u sing the values of the quasimomentum running over the boundary of the (reduced) Brillouin zone only, rather than the whole zone? Or, do the edges of the spectrum occur necessarily at the set of ``corner high symmetry points? This is known to be true in 1D, while no apparent reasons exist for this to be happening in higher dimensions. In many practical cases, though, this appears to be correct, which sometimes leads to the claims that this is always true. There seems to be no definite answer in the literature, and one encounters different opinions about this problem in the community. In this paper, starting with simple discrete graph operators, we construct a variety of convincing multiply-periodic examples showing that the spectral edges might occur deeply inside the Brillouin zone. On the other hand, it is also shown that in a ``generic case, the situation of spectral edges appearing at high symmetry points is stable under small perturbations. This explains to some degree why in many (maybe even most) practical cases the statement still holds.
Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudomodes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic non-semi- classical approach, which results in substantial progress in achieving optimal conditions and conclusions as well as in covering a wide class of previously inaccessible potentials, including superexponential ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا