ﻻ يوجد ملخص باللغة العربية
We consider the operator $H={d^4dt^4}+{ddt}p{ddt}+q$ with 1-periodic coefficients on the real line. The spectrum of $H$ is absolutely continuous and consists of intervals separated by gaps. We describe the spectrum of this operator in terms of the Lyapunov function, which is analytic on a two-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov function for the scalar case. We describe the spectrum of $H$ in terms of periodic, antiperiodic eigenvalues, and so-called resonances. We prove that 1) the spectrum of $H$ at high energy has multiplicity two, 2) the asymptotics of the periodic, antiperiodic eigenvalues and of the resonances are determined at high energy, 3) for some specific $p$ the spectrum of $H$ has an infinite number of gaps, 4) the spectrum of $H$ has small spectral band (near the beginner of the spectrum) with multiplicity 4 and its asymptotics are determined as $pto 0, q=0$.
We study Riesz means of eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on a cylinder in dimension three. We obtain an inequality with a sharp leading term and an additional lower order term.
We prove that the Fermi surface of a connected doubly periodic self-adjoint discrete graph operator is irreducible at all but finitely many energies provided that the graph (1) can be drawn in the plane without crossing edges (2) has positive couplin
In this paper, we mainly discuss the analytic expression of exact copositivity of 4th order symmetric tensor defined by the special physical model. We first show that for the general 4th order 2-dimensional symmetric tensor, it can be transformed int
We consider the nonlinear equations obtained from soliton equations by adding self-consistent sources. We demonstrate by using as an example the Kadomtsev-Petviashvili equation that such equations on periodic functions are not isospectral. They defor
The article discusses the following frequently arising question on the spectral structure of periodic operators of mathematical physics (e.g., Schroedinger, Maxwell, waveguide operators, etc.). Is it true that one can obtain the correct spectrum by u