ترغب بنشر مسار تعليمي؟ اضغط هنا

Interacting six-dimensional topological field theories

57   0   0.0 ( 0 )
 نشر من قبل Francois Gieres
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the gauge-fixing and symmetries (BRST-invariance and vector supersymmetry) of various six-dimensional topological models involving Abelian or non-Abelian 2-form potentials.



قيم البحث

اقرأ أيضاً

A general method to build the entanglement renormalization (cMERA) for interacting quantum field theories is presented. We improve upon the well-known Gaussian formalism used in free theories through a class of variational non-Gaussian wavefunctional s for which expectation values of local operators can be efficiently calculated analytically and in a closed form. The method consists of a series of scale-dependent nonlinear canonical transformations on the fields of the theory under consideration. Here, the $lambda, phi^4$ and the sine-Gordon scalar theories are used to illustrate how non-perturbative effects far beyond the Gaussian approximation are obtained by considering the energy functional and the correlation functions of the theory.
We present a simple derivation of vector supersymmetry transformations for topological field theories of Schwarz- and Witten-type. Our method is similar to the derivation of BRST-transformations from the so-called horizontality conditions or Russian formulae. We show that this procedure reproduces in a concise way the known vector supersymmetry transformations of various topological models and we use it to obtain some new transformations of this type for 4d topological YM-theories in different gauges.
We study four-dimensional superconformal field theories coupled to three-dimensional superconformal boundary or defect degrees of freedom. Starting with bulk N=2, d=4 theories, we construct abelian models preserving N=2, d=3 supersymmetry and the con formal symmetries under which the boundary/defect is invariant. We write the action, including the bulk terms, in N=2, d=3 superspace. Moreover we derive Callan-Symanzik equations for these models using their superconformal transformation properties and show that the beta functions vanish to all orders in perturbation theory, such that the models remain superconformal upon quantization. Furthermore we study a model with N=4 SU(N) Yang-Mills theory in the bulk coupled to a N=4, d=3 hypermultiplet on a defect. This model was constructed by DeWolfe, Freedman and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by Karch and Randall. We write this model in N=2, d=3 superspace, which has the distinct advantage that non-renormalization theorems become transparent. Using N=4, d=3 supersymmetry, we argue that the model is conformal.
191 - D.Bellisai , F.Fucito , A.Tanzini 2000
In this letter we argue that instanton-dominated Greens functions in N=2 Super Yang-Mills theories can be equivalently computed either using the so-called constrained instanton method or making reference to the topological twisted version of the theo ry. Defining an appropriate BRST operator (as a supersymmetry plus a gauge variation), we also show that the expansion coefficients of the Seiberg-Witten effective action for the low-energy degrees of freedom can be written as integrals of total derivatives over the moduli space of self-dual gauge connections.
We extend the definition of the refined topological vertex C to an n-coloured refined topological vertex C_n that depends on n free bosons, and compute the 5D strip partition function made of N pairs of C_n vertices and conjugate C*_n vertices. Using geometric engineering and the AGT correspondence, the 4D limit of this strip partition function is identified with a (normalized) matrix element of a (primary state) vertex operator that intertwines two (arbitrary descendant) states in a (generically non-rational) 2D conformal field theory with Z_n parafermion primary states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا