ﻻ يوجد ملخص باللغة العربية
We study four-dimensional superconformal field theories coupled to three-dimensional superconformal boundary or defect degrees of freedom. Starting with bulk N=2, d=4 theories, we construct abelian models preserving N=2, d=3 supersymmetry and the conformal symmetries under which the boundary/defect is invariant. We write the action, including the bulk terms, in N=2, d=3 superspace. Moreover we derive Callan-Symanzik equations for these models using their superconformal transformation properties and show that the beta functions vanish to all orders in perturbation theory, such that the models remain superconformal upon quantization. Furthermore we study a model with N=4 SU(N) Yang-Mills theory in the bulk coupled to a N=4, d=3 hypermultiplet on a defect. This model was constructed by DeWolfe, Freedman and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by Karch and Randall. We write this model in N=2, d=3 superspace, which has the distinct advantage that non-renormalization theorems become transparent. Using N=4, d=3 supersymmetry, we argue that the model is conformal.
Turning on N=2 supersymmetry-preserving relevant operators in a 4-dimensional N=2 superconformal field theory (SCFT) corresponds to a complex deformation compatible with the rigid special Kahler geometry encoded in the low energy effective action. Fi
We present a general method for computing the central charges a and c of N=2 superconformal field theories corresponding to singular points in the moduli space of N=2 gauge theories. Our method relates a and c to the U(1)_R anomalies of the topologic
Using the off-shell formulation for ${mathcal N}=2$ conformal supergravity in four dimensions, we propose superconformal higher-spin multiplets of conserved currents and their associated unconstrained gauge prepotentials. The latter are used to const
We study the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries, which potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that this classification is equivalen
Boundaries in three-dimensional $mathcal{N}=2$ superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choic