ﻻ يوجد ملخص باللغة العربية
We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approximation, and we neglect the coupling between polar and axial perturbations. In our approach, the frequency and damping time of the emitted gravitational radiation are directly obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is regularized. Constant density stars, polytropic stars, and stars with realistic equations of state are considered. In the case of constant density stars and polytropic stars, our results for the viscous damping times agree, within a factor two, with the usual estimates obtained by using the eigenfunctions of the inviscid limit. For realistic neutron stars, our numerical results give viscous damping times with the same dependence on mass and radius as previously estimated, but systematically larger of about 60%.
In the context of f(R)=R + alpha R^2 gravity, we study the existence of neutron and quark stars with no intermediate approximations in the generalised system of Tolman-Oppenheimer-Volkov equations. Analysis shows that for positive alphas the scalar c
Locally-rotationally-symmetric Bianchi type-I viscous and non -viscous cosmological models are explored in general relativity (GR) and in f(R,T) gravity. Solutions are obtained by assuming that the expansion scalar is proportional to the shear scalar
Previously we found that large amplitude $r$-modes could decay catastrophically due to nonlinear hydrodynamic effects. In this paper we found the particular coupling mechanism responsible for this catastrophic decay, and identified the fluid modes in
Within the framework of relativistic fluctuating hydrodynamics we compute the contribution of thermal fluctuations to the effective infrared shear viscosity of a conformal fluid, focusing on quadratic (in fluctuations), second order (in velocity grad
In this paper, we have studied non stationary dust spherically symmetric spacetime, in general covariant theory ($U(1)$ extension) of the Hov{r}ava-Lifshitz gravity with the minimally coupling and non-minimum coupling with matter, in the post-newtoni