ﻻ يوجد ملخص باللغة العربية
Within the framework of relativistic fluctuating hydrodynamics we compute the contribution of thermal fluctuations to the effective infrared shear viscosity of a conformal fluid, focusing on quadratic (in fluctuations), second order (in velocity gradients) terms in the conservation equations. Our approach is based on the separation of hydrodynamic fields in soft and ultrasoft sectors, in which the effective shear viscosity arises due to the action of the soft modes on the evolution of the ultrasoft ones. We find that for a strongly coupled fluid with small shear viscosity--to--entropy ratio $eta/s$ the contribution of thermal fluctuations to the effective shear viscosity is small but significant. Using realistic estimates for the strongly coupled quark--gluon plasma created in heavy ion collisions, we find that for $eta/s$ close to the AdS/CFT lower bound $1/(4pi)$ the correction is positive and at most amounts to 10% in the temperature range 200--300 MeV, whereas for larger values $eta/s sim 2/(4pi)$ the correction is negligible. For weakly coupled theories the correction is very small even for $eta/s=0.08$ and can be neglected.
The microscopic formulas for the shear viscosity $eta$, the bulk viscosity $zeta$, and the corresponding relaxation times $tau_pi$ and $tau_Pi$ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potentia
We show that spin polarization of a fermion in a relativistic fluid at local thermodynamic equilibrium can be generated by the symmetric derivative of the four-temperature vector, defined as thermal shear. As a consequence, besides vorticity, acceler
We have explored the shear viscosity and electrical conductivity calculations for bosonic and fermionic medium, which goes from without to with magnetic field picture and then their simplified massless expressions. In presence of magnetic field, 5 in
We generalize recent work to construct a map from the conformal Navier Stokes equations with holographically determined transport coefficients, in d spacetime dimensions, to the set of asymptotically locally AdS_{d+1} long wavelength solutions of Ein
We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approx