ﻻ يوجد ملخص باللغة العربية
Locally-rotationally-symmetric Bianchi type-I viscous and non -viscous cosmological models are explored in general relativity (GR) and in f(R,T) gravity. Solutions are obtained by assuming that the expansion scalar is proportional to the shear scalar which yields a constant value for the deceleration parameter (q=2). Constraints are obtained by requiring the physical viability of the solutions. A comparison is made between the viscous and non-viscous models, and between the models in GR and in f(R,T) gravity. The metric potentials remain the same in GR and in f(R,T) gravity. Consequently, the geometrical behavior of the $f(R,T)$ gravity models remains the same as the models in GR. It is found that f(R,T) gravity or bulk viscosity does not affect the behavior of effective matter which acts as a stiff fluid in all models. The individual fluids have very rich behavior. In one of the viscous models, the matter either follows a semi-realistic EoS or exhibits a transition from stiff matter to phantom, depending on the values of the parameter. In another model, the matter describes radiation, dust, quintessence, phantom, and the cosmological constant for different values of the parameter. In general, f(R,T) gravity diminishes the effect of bulk viscosity.
An LRS Bianchi-I space-time model is studied with constant Hubble parameter in $f(R,T)=R+2lambda T$ gravity. Although a single (primary) matter source is considered, an additional matter appears due to the coupling between matter and $f(R,T)$ gravity
A plane symmetric Bianchi-I model is explored in $f(R,T)$ gravity, where $R$ is the Ricci scalar and $T$ is the trace of energy-momentum tensor. The solutions are obtained with the consideration of a specific Hubble parameter which yields a constant
We study Dirac spinors in Bianchi type-I cosmological models, within the framework of torsional $f(R)$-gravity. We find four types of results: the resulting dynamic behavior of the universe depends on the particular choice of function $f(R)$; some $f
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an
In the present article we propose a new hybrid shape function for wormhole (WH)s in the modified $f(R,T)$ gravity. The proposed shape function satisfied the conditions of WH geometry. Geometrical behavior of WH solutions are discussed in both anisotr