ﻻ يوجد ملخص باللغة العربية
We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function $sigma(eta)$ of the conformal time $eta$, called the auxiliary field equation. At the classical level, $sigma(eta)$ can be expressed by means of two independent solutions of the master equation to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor $a^{2}(eta)$. A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous $eta-$dependent Hamiltonian. An estimate in terms of $sigma(eta)$ and $a(eta)$ of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of $eta$ are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.
We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections, by using the uniform asymptotic approximati
In this thesis, we discuss several instances in which non-linear behaviour affects cosmological evolution in the early Universe. We begin by reviewing the standard cosmological model and the tools used to understand it theoretically and to compute it
The standard model of cosmology with postulated dark energy and dark matter sources may be considered as a fairly successful fitting model to observational data. However, this model leaves the question of the physical origin of these dark components
We study the tensor modes of linear metric perturbations within an effective framework of loop quantum cosmology. After a review of inverse-volume and holonomy corrections in the background equations of motion, we solve the linearized tensor modes eq
A scenario is proposed in which the matter-antimatter asymmetry behaves like a seed for the inflationary phase of the universe. The mechanism which makes this scenario plausible is the holographic principle: this scheme is supported by a good predict