ﻻ يوجد ملخص باللغة العربية
In a recent Letter, Kravchenko et al. [cond-mat/9608101] have provided evidence for a metal-insulator transition (MIT) in a two-dimensional electron system (2DES) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs). The transition observed in these samples occurs at relatively low electron densities $n_{s}sim (1-2)times 10^{11}cm^{-2}$ and high disorder $sigma_{c}sim e^{2}/2h$. We present evidence for a 2D MIT in a structure where the disorderis about two orders of magnitude weaker than in Si MOSFETs. The MIT occurs in the same range of $n_s$ Providing very strong evidence that the 2D MIT in Si-based devices is caused by electron-electron interactions.
We report the observation of a re-entrant insulator--metal--insulator transition at B=0 in a two dimensional (2D) hole gas in GaAs at temperatures down to 30mK. At the lowest carrier densities the holes are strongly localised. As the carrier density
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a
Since the beginnings of the electronic age, a quest for ever faster and smaller switches has been initiated, since this element is ubiquitous and foundational in any electronic circuit to regulate the flow of current. Mott insulators are promising ca
We present results from an experimental study of the equilibrium and non-equilibrium transport properties of vanadium oxide nanobeams near the metal-insulator transition (MIT). Application of a large electric field in the insulating phase across the
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This