ترغب بنشر مسار تعليمي؟ اضغط هنا

Separating electric field and thermal effects across the metal-insulator transition in vanadium oxide nanobeams

228   0   0.0 ( 0 )
 نشر من قبل Sambandamurthy Ganapathy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from an experimental study of the equilibrium and non-equilibrium transport properties of vanadium oxide nanobeams near the metal-insulator transition (MIT). Application of a large electric field in the insulating phase across the nanobeams produces an abrupt MIT and the individual roles of thermal and non-thermal effects in driving the transition are studied. Transport measurements at temperatures ($T$) far below the critical temperature ($T_c$) of MIT, in several nanoscale vanadium oxide devices, show that both $T$ and electric field play distinctly separate, but critical roles in inducing the MIT. Specifically, at $T << T_c$ electric field dominates the MIT through an avalanche-type process, whereas thermal effects become progressively critical as $T$ approaches $T_c$.



قيم البحث

اقرأ أيضاً

The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperatur e. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, the sphere temperatures were varied in a range between 100 and 200 Celsius. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.
Amorphous vanadium dioxide (VO$_{2}$) films deposited by atomic layer deposition (ALD) were crystallized with an ex situ anneal at 660-670 ${deg}$C for 1-2 hours under a low oxygen pressure (10$^{-4}$ to 10$^{-5}$ Torr). Under these conditions the cr ystalline VO$_{2}$ phase was maintained, while formation of the V$_{2}$O$_{5}$ phase was suppressed. Electrical transition from the insulator to the metallic phase was observed in the 37-60 ${deg}$C range, with a R$_{ON}$/R$_{OFF}$ ratio of up to about 750 and critical transition temperature of 7-10 ${deg}$C. Electric field applied across two-terminal device structures induced a reversible phase change, with a room temperature transition field of about 25 kV/cm in the VO$_{2}$ sample processed with the 2 hr long anneal. Both the width and slope of the field induced MIT hysteresis were dependent upon the VO$_{2}$ crystalline quality.
We present a computationally efficient method to obtain the spectral function of bulk systems in the framework of steady-state density functional theory (i-DFT) using an idealized Scanning Tunneling Microscope (STM) setup. We calculate the current th rough the STM tip and then extract the spectral function from the finite-bias differential conductance. The fictitious non-interacting system of i-DFT features an exchange-correlation (xc) contribution to the bias which guarantees the same current as in the true interacting system. Exact properties of the xc bias are established using Fermi-liquid theory and subsequently implemented to construct approximations for the Hubbard model. We show for two different lattice structures that the metal-insulator transition is captured by i-DFT.
Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-ins ulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is an intrinsic local property, set by surface morphology and stable across multiple temperature cycles. Our data provides new insights into the MIT of heteroepitaxial nickelates and points to a rich, nanoscale phenomenology in this strongly correlated material.
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a ) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density $n_g$; (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا