ﻻ يوجد ملخص باللغة العربية
The translationally invariant diagrammatic quantum perturbation theory (TPT) is applied to the polaron problem on the 1D lattice, modeled through the Holstein Hamiltonian with the phonon frequency omega0, the electron hopping t and the electron-phonon coupling constant g. The self-energy diagrams of the fourth-order in g are calculated exactly for an intermittently added electron, in addition to the previously known second-order term. The corresponding quadratic and quartic corrections to the polaron ground state energy become comparable at t/omega0>1 for g/omega0~(t/omega0)^{1/4} when the electron self-trapping and translation become adiabatic. The corresponding non adiabatic/adiabatic crossover occurs while the polaron width is large, i.e. the lattice coarsening negligible. This result is extended to the range (t/omega0)^{1/2}>g/omega0>(t/omega0)^{1/4}>1 by considering the scaling properties of the high-order self-energy diagrams. It is shown that the polaron ground state energy, its width and the effective mass agree with the results found traditionally from the broken symmetry side, kinematic corrections included. The Landau self trapping of the electron in the classic self-consistent, localized displacement potential, the restoration of the translational symmetry by the classic translational Goldstone mode and the quantization of the polaronic translational coordinate are thus all encompassed by a quantum theory which is translationally invariant from the outset.
The carrier-density dependence of the photoemission spectrum of the Holstein many-polaron model is studied using cluster perturbation theory combined with an improved cluster diagonalization by Chebychev expansion.
We present a novel approach to long-range correlations beyond dynamical mean-field theory through a ladder approximation to dual fermions. The new technique is applied to the two-dimensional Hubbard model. We demonstrate that the transformed perturba
We study anomalous dimensions of unprotected low twist operators in the four-dimensional $SU(N)$ $mathcal{N}=4$ supersymmetric Yang-Mills theory. We construct a class of interpolating functions to approximate the dimensions of the leading twist opera
We construct examples of translationally invariant solvable models of strongly-correlated metals, composed of lattices of Sachdev-Ye-Kitaev dots with identical local interactions. These models display crossovers as a function of temperature into regi
The polaron formation is investigated in the intermediate regime of the Holstein model by using an exact diagonalization technique for the one-dimensional infinite lattice. The numerical results for the electron and phonon propagators are compared wi