ﻻ يوجد ملخص باللغة العربية
The polaron formation is investigated in the intermediate regime of the Holstein model by using an exact diagonalization technique for the one-dimensional infinite lattice. The numerical results for the electron and phonon propagators are compared with the nonadiabatic weak- and strong-coupling perturbation theories, as well as with the harmonic adiabatic approximation. A qualitative explanation of the crossover regime between the self-trapped and free-particle-like behaviors, not well-understood previously, is proposed. It is shown that a fine balance of nonadiabatic and adiabatic contributions determines the motion of small polarons, making them light. A comprehensive analysis of spatially and temporally resolved low-frequency lattice correlations that characterize the translationally invariant polaron states is derived. Various behaviors of the polaronic deformation field, ranging from classical adiabatic for strong couplings to quantum nonadiabatic for weak couplings, are discussed.
We review numerical results for ground-state and spectral properties of the single-electron Holstein model.
We study the Holstein polaron in transverse magnetic field using non-perturbational methods. At strong fields and large coupling, we show that the polaron has a Hofstadter spectrum, however very distorted and of lower symmetry than that of a (heavier
We describe the formation and properties of Holstein polarons in the entire parameter regime. Our presentation focuses on the polaron mass and radius, which we obtain with an improved numerical technique. It is based on the combination of variational
Employing the recently developed self-consistent variational basis generation scheme, we have investigated the bipolaron-bipolaron interaction within the purview of Holstein-Hubbard and the extended-Holstein-Hubbard (F2H) model on a discrete one-dime
We study the effects of anharmonicity on the physics of the Holstein model, which describes the coupling of itinerant fermions and localized quantum phonons, by introducing a quartic term in the phonon potential energy. We find that the presence of t