ترغب بنشر مسار تعليمي؟ اضغط هنا

Translationally invariant non-Fermi liquid metals with critical Fermi-surfaces: Solvable models

122   0   0.0 ( 0 )
 نشر من قبل Debanjan Chowdhury
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct examples of translationally invariant solvable models of strongly-correlated metals, composed of lattices of Sachdev-Ye-Kitaev dots with identical local interactions. These models display crossovers as a function of temperature into regimes with local quantum criticality and marginal-Fermi liquid behavior. In the marginal Fermi liquid regime, the dc resistivity increases linearly with temperature over a broad range of temperatures. By generalizing the form of interactions, we also construct examples of non-Fermi liquids with critical Fermi-surfaces. The self energy has a singular frequency dependence, but lacks momentum dependence, reminiscent of a dynamical mean field theory-like behavior but in dimensions $d<infty$. In the low temperature and strong-coupling limit, a heavy Fermi liquid is formed. The critical Fermi-surface in the non-Fermi liquid regime gives rise to quantum oscillations in the magnetization as a function of an external magnetic field in the absence of quasiparticle excitations. We discuss the implications of these results for local quantum criticality and for fundamental bounds on relaxation rates. Drawing on the lessons from these models, we formulate conjectures on coarse grained descriptions of a class of intermediate scale non-fermi liquid behavior in generic correlated metals.



قيم البحث

اقرأ أيضاً

250 - T. Senthil 2008
At certain quantum critical points in metals an entire Fermi surface may disappear. A crucial question is the nature of the electronic excitations at the critical point. Here we provide arguments showing that at such quantum critical points the Fermi surface remains sharply defined even though the Landau quasiparticle is absent. The presence of such a critical Fermi surface has a number of consequences for the universal phenomena near the quantum critical point which are discussed. In particular the structure of scaling of the universal critical singularities can be significantly modified from more familiar criticality. Scaling hypotheses appropriate to a critical fermi surface are proposed. Implications for experiments on heavy fermion critical points are discussed. Various phenomena in the normal state of the cuprates are also examined from this perspective. We suggest that a phase transition that involves a dramatic reconstruction of the Fermi surface might underlie a number of strange observations in the metallic states above the superconducting dome.
Significant effort has been devoted to the study of non-Fermi liquid (NFL) metals: gapless conducting systems that lack a quasiparticle description. One class of NFL metals involves a finite density of fermions interacting with soft order parameter f luctuations near a quantum critical point. The problem has been extensively studied in a large N limit (N corresponding to the number of fermion flavors) where universal behavior can be obtained by solving a set of coupled saddle-point equations. However a remarkable study by S.-S.~Lee revealed the breakdown of such approximations in two spatial dimensions. We show that an alternate approach, in which the fermions belong to the fundamental representation of a global SU(N) flavor symmetry, while the order parameter fields transform under the adjoint representation (a matrix large N theory), yields a tractable large N limit. At low energies, the system consists of an overdamped boson with dynamical exponent $z=3$ coupled to a non-Fermi liquid with self energy $Sigma(omega) sim omega^{2/3}$, consistent with previous studies.
Luttinger semimetals have quadratic band crossings at the Brillouin zone-center in three spatial dimensions. Coulomb interactions in a model that describes these systems stabilize a non-trivial fixed point associated with a non-Fermi liquid state, al so known as the Luttinger-Abrikosov-Beneslavskii phase. We calculate the optical conductivity $sigma (omega) $ and the dc conductivity $sigma_{dc} (T) $ of this phase, by means of the Kubo formula and the Mori-Zwanzig memory matrix method, respectively. Interestingly, we find that $sigma (omega) $, as a function of the frequency $omega$ of an applied ac electric field, is characterized by a small violation of the hyperscaling property in the clean limit, which is in marked contrast to the low-energy effective theories that possess Dirac quasiparticles in the excitation spectrum and obey hyperscaling. Furthermore, the effects of weak short-ranged disorder on the temperature-dependence of $sigma_{dc} (T)$ give rise to a much stronger power-law suppression at low temperatures compared to the clean limit. Our findings demonstrate that these disordered systems are actually power-law insulators. Our theoretical results agree qualitatively with the data from recent experiments performed on Luttinger semimetal compounds like the pyrochlore iridates [ (Y$_{1-x}$Pr$_x$)$_2$Ir$_2$O$_7$ ].
64 - T. Senthil 2006
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transiti on with an eye toward understanding the non-fermi liquid phenomena. We suggest that the non-Fermi liquid quantum critical state may have a sharp Fermi surface with power law quasiparticles but with a volume not set by the usual Luttinger rule. We also discuss the possibility that the electronic structure change associated with the possible Fermi surface reconstruction may diverge at a different time/length scale from that associated with magnetic phenomena.
We revisit the interplay between superconductivity and quantum criticality when thermal effects from virtual static bosons are included. These contributions, which arise from an effective theory compactified on the thermal circle, strongly affect fie ld-theoretic predictions even at small temperatures. We argue that they are ubiquitous in a wide variety of models of non-Fermi liquid behavior, and generically produce a parametric suppression of superconducting instabilities. We apply these ideas to non-Fermi liquids in $d=2$ space dimensions, obtained by coupling a Fermi surface to a Landau-damped soft boson. Extending previous methods developed for $d=3-epsilon$ dimensions, we determine the dynamics and phase diagram. It features a naked quantum critical point, separated by a continuous infinite order transition from a superconducting phase with strong non-Fermi liquid corrections. We also highlight the relevance of these effects for (numerical) experiments on non-Fermi liquids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا