ﻻ يوجد ملخص باللغة العربية
Nanowires of Pr_0.57 Ca_0.41 Ba_0.02 MnO_3 (PCBM) (diameter ~ 80-90 nm and length ~ 3.5 mm) were synthesized by a low reaction temperature hydrothermal method. Single-phase nature of the sample was confirmed by XRD experiments. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and microstructures of the nanowires. While the bulk PCBM is known to exhibit charge order (CO) below 230 K along with a ferromagnetic transition at 110 K, SQUID measurements on the nanowires of PCBM show that the charge order is completely absent and a ferromagnetic transition occurs at 115 K. However, the magnetization in the nanowires is observed to be less compared to that in the bulk. This observation of the complete melting of the charge order in the PCBM nanowires is particularly significant in view of the observation of only a weakening of the CO in the nanowires of Pr_0.5 Ca_0.5 MnO_3. Electron paramagnetic resonance experiments were also carried out on the PCBM nanowires using an X-band EPR spectrometer. Characteristic differences were observed in the line width of nanowires when compared with that of the bulk.
Nd_0.5 Ca_0.5 MnO_3 (NCMO) nanoparticles (average diameter ~ 20 and 40 nm) are synthesized by polymeric precursor sol-gel method and characterized by X- ray diffraction, transmission electron microscopy (TEM), selective area electron diffraction (SAE
We study the electronic structure, magnetic state, and phase stability of paramagnetic BiNiO$_3$ near a pressure-induced Mott insulator-to-metal transition (MIT) by employing a combination of density functional and dynamical mean-field theory. We obt
We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La$_{0.5}$Sr$_{1.5}$MnO$_4$. We find that the interfacial width of the electronic order grows as the bulk ordering temperature is approached from below
We have studied the effect of electric field on transport properties of the prototypical phase separated manganite La5/8-yPryCa3/8MnO3 with y=0.34. Our results show that the suggested image in which the charge ordered state is melted by the appliance
Charge density waves (CDWs) underpin the electronic properties of many complex materials. Near-equilibrium CDW order is linearly coupled to a periodic, atomic-structural distortion, and the dynamics is understood in terms of amplitude and phase modes