ﻻ يوجد ملخص باللغة العربية
Charge density waves (CDWs) underpin the electronic properties of many complex materials. Near-equilibrium CDW order is linearly coupled to a periodic, atomic-structural distortion, and the dynamics is understood in terms of amplitude and phase modes. However, at the shortest timescales lattice and charge order may become de-coupled, highlighting the electronic nature of this many-body broken symmetry ground state. Using time and angle resolved photoemission spectroscopy with sub-30-fs XUV pulses, we have mapped the time- and momentum-dependent electronic structure in photo-stimulated 1T-TaS2, a prototypical two-dimensional charge density wave compound. We find that CDW order, observed as a splitting of the uppermost electronic bands at the Brillouin zone boundary, melts well before relaxation of the underlying structural distortion. Decoupled charge and lattice modulations challenge the view of Fermi Surface nesting as a driving force for charge density wave formation in 1T-TaS2.
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}C
In the optical conductivity of four different manganites with commensurate charge order (CO), strong peaks appear in the meV range below the ordering temperature T_{CO}. They are similar to those reported for one-dimensional charge density waves (CDW
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics in the charge-density-wave/Mott insulator 1T-TaS2. After strong photoexcitation, a prompt los
We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical electron-phonon coupling streng
Charge density waves (CDW) are modulations of the electron density and the atomic lattice that develop in some crystalline materials at low temperature. We report an unusual example of a CDW in BaFe$_2$Al$_9$ below 100 K. In contrast to the canonical