ﻻ يوجد ملخص باللغة العربية
We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La$_{0.5}$Sr$_{1.5}$MnO$_4$. We find that the interfacial width of the electronic order grows as the bulk ordering temperature is approached from below, though the bulk correlation length remains unchanged. Close to the transition, the surface is so rough that there is no well-defined electronic surface, despite the presence of bulk electronic order, that is the electronic surface has melted. Above the bulk transition, finite-sized isotropic fluctuations of orbital order are observed, with a correlation length equal to that of the electronic surfaces in-plane correlation length at the transition temperature.
We present theoretical results on the high-temperature phase stability and phonon spectra of paramagnetic bcc iron which explicitly take into account many-body effects. Several peculiarities, including a pronounced softening of the [110] transverse (
We study the mechanism of orbital-order melting observed at temperature T_OO in the series of rare-earth manganites. We find that many-body super-exchange yields a transition-temperature T_KK that decreases with decreasing rare-earth radius, and incr
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low tempe
Nanowires of Pr_0.57 Ca_0.41 Ba_0.02 MnO_3 (PCBM) (diameter ~ 80-90 nm and length ~ 3.5 mm) were synthesized by a low reaction temperature hydrothermal method. Single-phase nature of the sample was confirmed by XRD experiments. Scanning electron micr
The emergent properties of quantum materials, such as symmetry-broken phases and associated spectral gaps, can be effectively manipulated by ultrashort photon pulses. Impulsive optical excitation generally results in a complex non-equilibrium electro