ﻻ يوجد ملخص باللغة العربية
Grazing incidence anomalous x-ray scattering was used to monitor in situ the molecular beam epitaxy growth of GaN/AlN quantum dots (QDs). The strain state was studied by means of grazing incidence Multi-wavelength Anomalous Di raction (MAD) in both the QDs and the AlN during the progressive coverage of QDs by AlN monolayers. Vertical correlation in the position of the GaN QDs was also studied by both grazing incidence MAD and anomalous Grazing Incidence Small Angle Scattering (GISAXS) as a function of the number of GaN planes and of the AlN spacer thickness. In a regime where the GaN QDs and the AlN capping are mutually strain influenced, a vertical correlation in the position of QDs is found with as a side-e ect an average increase in the QDs width.
We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range bet
We study theoretically the electronic properties of $c$-plane GaN/AlN quantum dots (QDs) with focus on their potential as sources of single polarized photons for future quantum communication systems. Within the framework of eight-band k.p theory we c
N-polar GaN/AlN resonant tunneling diodes are realized on single-crystal N-polar GaN bulk substrate by plasma-assisted molecular beam epitaxy growth. The room-temperature current-voltage characteristics reveal a negative differential conductance (NDC
In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrosta
Molecular beam epitaxy of Fe3Si on GaAs(001) is studied in situ by grazing incidence x-ray diffraction. Layer-by-layer growth of Fe3Si films is observed at a low growth rate and substrate temperatures near 200 degrees Celsius. A damping of x-ray inte