ﻻ يوجد ملخص باللغة العربية
We study theoretically the electronic properties of $c$-plane GaN/AlN quantum dots (QDs) with focus on their potential as sources of single polarized photons for future quantum communication systems. Within the framework of eight-band k.p theory we calculate the optical interband transitions of the QDs and their polarization properties. We show that an anisotropy of the QD confinement potential in the basal plane (e.g. QD elongation or strain anisotropy) leads to a pronounced linear polarization of the ground state and excited state transitions. An externally applied uniaxial stress can be used to either induce a linear polarization of the ground-state transition for emission of single polarized photons or even to compensate the polarization induced by the structural elongation.
We report the first realization of molecular beam epitaxy grown strained GaN quantum well field-effect transistors on single-crystal bulk AlN substrates. The fabricated double heterostructure FETs exhibit a two- dimensional electron gas (2DEG) densit
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we
We present an optical spectroscopy study of non-polar GaN/AlN quantum dots by time-resolved photoluminescence and by microphotoluminescence. Isolated quantum dots exhibit sharp emission lines, with linewidths in the 0.5-2 meV range due to spectral di
In this work we present a comparison of multiband k.p-models, the effective bond-orbital approach, and an empirical tight-binding model to calculate the electronic structure for the example of a truncated pyramidal GaN/AlN self-assembled quantum dot
We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range bet