ترغب بنشر مسار تعليمي؟ اضغط هنا

In situ x-ray diffraction study of epitaxial growth of ordered Fe3Si films

405   0   0.0 ( 0 )
 نشر من قبل Bernd Jenichen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular beam epitaxy of Fe3Si on GaAs(001) is studied in situ by grazing incidence x-ray diffraction. Layer-by-layer growth of Fe3Si films is observed at a low growth rate and substrate temperatures near 200 degrees Celsius. A damping of x-ray intensity oscillations due to a gradual surface roughening during growth is found. The corresponding sequence of coverages of the different terrace levels is obtained. The after-deposition surface recovery is very slow. Annealing at 310 degrees Celsius combined with the deposition of one monolayer of Fe3Si restores the surface to high perfection and minimal roughness. Our stoichiometric films possess long-range order and a high quality heteroepitaxial interface.



قيم البحث

اقرأ أيضاً

We analyze the lineshape of x-ray diffraction profiles of GaN epitaxial layers with large densities of randomly distributed threading dislocations. The peaks are Gaussian only in the central, most intense part of the peak, while the tails obey a powe r law. The $q^{-3}$ decay typical for random dislocations is observed in double-crystal rocking curves. The entire profile is well fitted by a restricted random dislocation distribution. The densities of both edge and screw threading dislocations and the ranges of dislocation correlations are obtained.
In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrosta tic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in-situ synchrotron x-ray diffraction during the growth of BaTiO$_3$/SrTiO$_3$ superlattices on SrTiO$_3$ substrates by off-axis RF magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO$_3$ substrates and 20nm SrRuO$_3$ thin films on SrTiO$_3$ substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.
Temperature dependent structural phase transitions of SrRuO3 thin films epitaxially grown on SrTiO3(001) single crystal substrates have been studied using high-resolution x-ray diffraction. In contrast to bulk SrRuO3, coherently strained epitaxial la yers do not display cubic symmetry up to ~730 oC and remain tetragonal. Such behavior is believed to be induced by compressive strain between the SrRuO3 layer and SrTiO3 substrate due to lattice mismatch. The tetragonal symmetry during growth explains the single domain growth on miscut SrTiO3 substrates with step edges running along the [100] or [010] direction.
Strain engineering of perovskite oxide thin films has proven to be an extremely powerful method for enhancing and inducing ferroelectric behavior. In ferroelectric thin films and superlattices, the polarization is intricately linked to crystal struct ure, but we show here that it can also play an important role in the growth process, influencing growth rates, relaxation mechanisms, electrical properties and domain structures. We have studied this effect in detail by focusing on the properties of BaTiO$_{3}$ thin films grown on very thin layers of PbTiO$_{3}$ using a combination of x-ray diffraction, piezoforce microscopy, electrical characterization and rapid in-situ x-ray diffraction reciprocal space maps during the growth using synchrotron radiation. Using a simple model we show that the changes in growth are driven by the energy cost for the top material to sustain the polarization imposed upon it by the underlying layer, and these effects may be expected to occur in other multilayer systems where polarization is present during growth. Our research motivates the concept of polarization engineering during the growth process as a new and complementary approach to strain engineering.
Cubic boron phosphide BP has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio ca lculations. The data on Raman shift as a function of pressure, combined with equation-of-state data, allowed us to estimate the Gruneisen parameters of the TO and LO modes of zinc-blende structure, {gamma}GTO = 1.16 and {gamma}GLO = 1.04, just like in the case of other AIIIBV diamond-like phases, for which {gamma}GTO > {gamma}GLO = 1. We also established that the pressure dependence of the effective electro-optical constant {alpha} is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ~0.25 at 0.1 MPa to ITO/ILO ~2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا