ﻻ يوجد ملخص باللغة العربية
We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant expansion about a free field theory equivalent to the Debye-Huckel approximation. In contrast with previous calculations, the surface tension is calculated directly without recourse to integrating thermodynamic relations. The system considered is a monovalent electrolyte with a region at the interface, of width h, from which the ionic species are excluded. In the case where the external dielectric constant epsilon_0 is smaller than the electrolyte solutions dielectric constant epsilon we show that the calculation at this order can be fully regularized. In the case where h is taken to be zero the Onsager-Samaras limiting law for the excess surface tension of dilute electrolyte solutions is recovered, with corrections coming from a non-zero value of epsilon_0/epsilon.
We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amontons laws
A model for the limiting surface tension of surfactant solutions (surface tension at and above the critical micelle concentration, cmc) was developed. This model takes advantage of the equilibrium between the surfactant molecules on the liquid/vacuum
In this paper we consider the two-loop calculation of the disjoining pressure of a symmetric electrolytic soap film. We show that the disjoining pressure is finite when the loop expansion is resummed using a cumulant expansion and requires no short d
In this paper we develop a field-theoretic description for run and tumble chemotaxis, based on a density functional description of crystalline materials modified to capture orientational ordering. We show that this framework, with its in-built multi-
The contact between a spherical indenter and a solid is considered. A numerical finite element model (F. E. M) to taking into account the surface tension of the solid is presented and assessed. It is shown that for nano-indentation of soft materials,