ترغب بنشر مسار تعليمي؟ اضغط هنا

A field theoretic model for static friction

230   0   0.0 ( 0 )
 نشر من قبل Shahin Rouhani
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amontons laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the coefficient of static friction is independent of apparent surface area in first approximation.



قيم البحث

اقرأ أيضاً

Tribological phenomena are governed by combined effects of material properties, topology and surface-chemistry. We study the interplay of multiscale surface structures with molecular-scale interactions towards interpreting static frictional interacti ons at fractal interfaces. By spline-assisted-discretization we analyse asperity interactions in pairs of contacting fractal surface-profiles. For elastically deforming asperities, force analysis reveals greater friction at surfaces exhibiting higher fractality, with increasing molecular-scale friction amplifying this trend. Increasing adhesive strength yields higher overall friction at surfaces of lower fractality owing to greater true-contact-area. In systems where adhesive-type interactions play an important role, such as those where cold-welded junctions form, friction is minimised at an intermediate value of surface profile fractality found to be around 1.3 to 1.5. Results have implications for systems exhibiting evolving surface structures.
In this paper we develop a field-theoretic description for run and tumble chemotaxis, based on a density functional description of crystalline materials modified to capture orientational ordering. We show that this framework, with its in-built multi- particle interactions, soft-core repulsion and elasticity is ideal for describing continuum collective phases with particle resolution, but on diffusive timescales. We show that our model exhibits particle aggregation in an externally imposed constant attractant field, as is observed for phototactic or thermotactic agents. We also show that this model captures particle aggregation through self-chemotaxis, an important mechanism that aids quorum dependent cellular interactions.
109 - D.S. Dean , R.R. Horgan 2003
We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant expansion about a free field theory equivalent to the Debye-Huckel approximation. In contrast with previous calculations, the surface tension is calculated directly without recourse to integrating thermodynamic relations. The system considered is a monovalent electrolyte with a region at the interface, of width h, from which the ionic species are excluded. In the case where the external dielectric constant epsilon_0 is smaller than the electrolyte solutions dielectric constant epsilon we show that the calculation at this order can be fully regularized. In the case where h is taken to be zero the Onsager-Samaras limiting law for the excess surface tension of dilute electrolyte solutions is recovered, with corrections coming from a non-zero value of epsilon_0/epsilon.
153 - Chiu Fan Lee 2007
We analyse the dynamics of polymer translocation in the strong force regime by recasting the problem into solving a differential equation with a moving absorbing boundary. For the total translocation time, $tau_{rm tr}$, our simple mean-field model p redicts that $tau_{rm tr}sim$ (number of monomers)$^{1.5}$, which is in agreement with the exponent found in previous simulation results. Our model also predicts intricate dependencies of $tau_{rm tr}$ on the variations of the pulling force and of the temperature.
We discuss the stick-slip motion of an elastic block sliding along a rigid substrate. We argue that for a given external shear stress this system shows a discontinuous nonequilibrium transition from a uniform stick state to uniform sliding at some cr itical stress which is nothing but the Griffith threshold for crack propagation. An inhomogeneous mode of sliding occurs, when the driving velocity is prescribed instead of the external stress. A transition to homogeneous sliding occurs at a critical velocity, which is related to the critical stress. We solve the elastic problem for a steady-state motion of a periodic stick-slip pattern and derive equations of motion for the tip and resticking end of the slip pulses. In the slip regions we use the linear viscous friction law and do not assume any intrinsic instabilities even at small sliding velocities. We find that, as in many other pattern forming system, the steady-state analysis itself does not select uniquely all the internal parameters of the pattern, especially the primary wavelength. Using some plausible analogy to first order phase transitions we discuss a ``soft selection mechanism. This allows to estimate internal parameters such as crack velocities, primary wavelength and relative fraction of the slip phase as function of the driving velocity. The relevance of our results to recent experiments is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا