ﻻ يوجد ملخص باللغة العربية
The contact between a spherical indenter and a solid is considered. A numerical finite element model (F. E. M) to taking into account the surface tension of the solid is presented and assessed. It is shown that for nano-indentation of soft materials, the surface tension of the solid influences significantly the reaction force due to indentation. The validity of the classical Hertz model is defined. In very good approximation, the force vs. indentation depth curve can be fitted by a power law function $F=a^delta b$ where $F$ denotes the force acting on the indentor, $d$ the indentation depth, $a$ and $bin ]1,1.5]$ are constants depending on the materials and the size of the indentor.
Surface tension is a prominent factor for the deformation of solids at micro-/nano-scale. This paper investigates the effects of surface tension on the two-dimensional contact problems of an elastic layer bonded to the rigid substrate. Under the plan
The classical models of Hertz, Sneddon and Boussinesq provide solutions for problems of indentation of a semi-infinite elastic massif by a sphere, a sphere or a cone and a flat punch. Although these models have been widely tested, it appears that at
We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant expansion about a free field theory equivalent to the Debye-Huckel approximation. In contrast with previous calculations, the surface tension is
Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their prope
We investigate localised bulging or necking in an incompressible, hyperelastic cylindrical tube under axial stretching and surface tension. Three cases are considered in which the tube is subjected to different constraints. In case 1 the inner and ou