ﻻ يوجد ملخص باللغة العربية
We study the thermodynamics of ultrasmall metallic grains with the mean level spacing comparable or larger than the pairing correlation energy in the whole range of temperatures. A complete picture of the thermodynamics in such systems is given taking into account the effects of disorder, parity and classical and quantum fluctuations. Both spin susceptibility and specific heat turn out to be sensitive probes to detect superconducting correlations in such samples.
We study the thermodynamics of ultrasmall metallic grains with level spacing $delta$ comparable or smaller than the pairing correlation energy, at finite temperatures, $T gsim delta$. We describe a method which allows to find quantum corrections to t
We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amp
We solve the Ginzburg-Landau equation (GLE) for the mesoscopic superconducting thin film of the square shape in the magnetic field for the wide range of the Ginzburg-Landau parameter $0.05<kappa_{eff}<infty $. We found that the phase with the antivor
The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occu
The fluctuating diamagnetic magnetization Mfl at constant field H as a function of temperature and the isothermal magnetization Mfl vs H are measured in MgB2, above the superconducting transition temperature. The expressions for Mfl in randomly orien