ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional Vortex Dynamics in Mesoscopic Superconducting Corbino Disks

149   0   0.0 ( 0 )
 نشر من قبل Vyacheslav Misko
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.



قيم البحث

اقرأ أيضاً

121 - V.R. Misko , B. Xu , 2008
Recent experiments [I.V. Grigorieva et al., Phys. Rev. Lett. 96, 077005 (2006)] on visualization of vortices using the Bitter decoration technique revealed vortex shells in mesoscopic superconducting Nb disks containing up to L=40 vortices. Some of t he found configurations did not agree with those predicted theoretically. We show here that this discrepancy can be traced back to the larger disks with radii R ~ 1 to 2.5mu m, i.e., R ~ 50-100xi(0) used in the experiment, while in previous theoretical studies vortex states with vorticity L < 40 were analyzed for smaller disks with R ~ 5-20xi(0). The present analysis is done for thin disks (mesoscopic regime) and for thick (macroscopic) disks where the London screening is taken into account. We found that the radius of the superconducting disk has a pronounced influence on the vortex configuration in contrast to, e.g., the case of parabolic confined charged particles. The missing vortex configurations and the region of their stability are found, which are in agreement with those observed in the experiment.
140 - T.W. Heitmann 2008
We have developed a picovoltmeter using a Nb dc Superconducting QUantum Interference Device (SQUID) for measuring the flux-flow voltage from a small number of vortices moving through a submicron weak-pinning superconducting channel. We have applied t his picovoltmeter to measure the vortex response in a single channel arranged in a circle on a Corbino disk geometry. The circular channel allows the vortices to follow closed orbits without encountering any sample edges, thus eliminating the influence of entry barriers.
256 - K. Yu 2010
Vortices confined to superconducting easy flow channels with periodic constrictions exhibit reversible oscillations in the critical current at which vortices begin moving as the external magnetic field is varied. This commensurability scales with the channel shape and arrangement, although screening effects play an important role. For large magnetic fields, some of the vortices become pinned outside of the channels, leading to magnetic hysteresis in the critical current. Some channel configurations also exhibit a dynamical hysteresis in the flux-flow regime near the matching fields.
Vortex dynamics in superconductors have received a great deal of attention from both fundamental and applied researchers over the past few decades. Because of its critical role in the energy relaxation process of type-II superconductors, vortex dynam ics have been deemed a key contributor to the response rate of the emerging superconducting single photon detector (SSPD). With the support of electrical transport measurements under external magnetic fields, vortex dynamics in superconducting a-MoSi thin films are investigated in this work. It is ascertained that the vortex state changes from pinned to flux flow under the influence of the Lorentz force. The critical vortex velocity v* and quasi-particle inelastic scattering time {tau}* under different magnetic fields are derived from the Larkin-Ovchinnikov model. Under high magnetic fields, the v* power law dependence (v*~B-1/2) collapses, i.e., v* tends to zero, which is attributed to the obstruction of flux flow by the intrinsic defects, while the {tau}* increases with the increasing magnetic field strength. In addition, the degree of vortex rearrangement is found to be enhanced by photon-induced reduction in potential barrier, which mitigates the adverse effect of film inhomogeneity on superconductivity in the a-MoSi thin films. The thorough understanding of the vortex dynamics in a-MoSi thin films under the effect of external stimuli is of paramount importance for both further fundamental research in this area and optimization of SSPD design.
Harnessing the properties of vortices in superconductors is crucial for fundamental science and technological applications; thus, it has been an ongoing goal to locally probe and control vortices. Here, we use a scanning probe technique that enables studies of vortex dynamics in superconducting systems by leveraging the resonant behavior of a raster-scanned, magnetic-tipped cantilever. This experimental setup allows us to image and control vortices, as well as extract key energy scales of the vortex interactions. Applying this technique to lattices of superconductor island arrays on a metal, we obtain a variety of striking spatial patterns that encode information about the energy landscape for vortices in the system. We interpret these patterns in terms of local vortex dynamics and extract the relative strengths of the characteristic energy scales in the system, such as the vortex-magnetic field and vortex-vortex interaction strengths, as well as the vortex chemical potential. We also demonstrate that the relative strengths of the interactions can be tuned and show how these interactions shift with an applied bias. The high degree of tunability and local nature of such vortex imaging and control not only enable new understanding of vortex interactions, but also have potential applications in more complex systems such as those relevant to quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا