ﻻ يوجد ملخص باللغة العربية
We use nonlinear signal processing techniques, based on artificial neural networks, to construct an empirical mapping from experimental Rayleigh-Benard convection data in the quasiperiodic regime. The data, in the form of a one-parameter sequence of Poincare sections in the interior of a mode-locked region (resonance horn), are indicative of a complicated interplay of local and global bifurcations with respect to the experimentally varied Rayleigh number. The dynamic phenomena apparent in the data include period doublings, complex intermittent behavior, secondary Hopf bifurcations, and chaotic dynamics. We use the fitted map to reconstruct the experimental dynamics and to explore the associated local and global bifurcation structures in phase space. Using numerical bifurcation techniques we locate the stable and unstable periodic solutions, calculate eigenvalues, approximate invariant manifolds of saddle type solutions and identify bifurcation points. This approach constitutes a promising data post-processing procedure for investigating phase space and parameter space of real experimental systems; it allows us to infer phase space structures which the experiments can only probe with limited measurement precision and only at a discrete number of operating parameter settings.
We perform a bifurcation analysis of the steady state solutions of Rayleigh--Benard convection with no-slip boundary conditions in two dimensions using a numerical method called deflated continuation. By combining this method with an initialisation s
We report experiments on convection patterns in a cylindrical cell with a large aspect ratio. The fluid had a Prandtl number of approximately 1. We observed a chaotic pattern consisting of many rotating spirals and other defects in the parameter rang
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$
We use persistent homology to build a quantitative understanding of large complex systems that are driven far-from-equilibrium; in particular, we analyze image time series of flow field patterns from numerical simulations of two important problems in
By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--Benard convection experiments in a cylindrical container of aspect ratio $Gamma=D/L=0.5$ between its di