ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Kolmogorov Flow and Rayleigh-Benard Convection using Persistent Homology

144   0   0.0 ( 0 )
 نشر من قبل Miroslav Kramar
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use persistent homology to build a quantitative understanding of large complex systems that are driven far-from-equilibrium; in particular, we analyze image time series of flow field patterns from numerical simulations of two important problems in fluid dynamics: Kolmogorov flow and Rayleigh-Benard convection. For each image we compute a persistence diagram to yield a reduced description of the flow field; by applying different metrics to the space of persistence diagrams, we relate characteristic features in persistence diagrams to the geometry of the corresponding flow patterns. We also examine the dynamics of the flow patterns by a second application of persistent homology to the time series of persistence diagrams. We demonstrate that persistent homology provides an effective method both for quotienting out symmetries in families of solutions and for identifying multiscale recurrent dynamics. Our approach is quite general and it is anticipated to be applicable to a broad range of open problems exhibiting complex spatio-temporal behavior.



قيم البحث

اقرأ أيضاً

By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--Benard convection experiments in a cylindrical container of aspect ratio $Gamma=D/L=0.5$ between its di ameter ($D$) and height ($L$). We consider the two cases of a cylinder at rest and rotating around its cylinder axis. We find that the relative amplitude of the large-scale circulation (LSC) and its orientation inside the container at different points in time are associated to prominent geometric features in the embedding space spanned by the two dominant diffusion-maps eigenvectors. From this two-dimensional embedding we can measure azimuthal drift and diffusion rates, as well as coherence times of the LSC. In addition, we can distinguish from the data clearly the single roll state (SRS), when a single roll extends through the whole cell, from the double roll state (DRS), when two counter-rotating rolls are on top of each other. Based on this embedding we also build a transition matrix (a discrete transfer operator), whose eigenvectors and eigenvalues reveal typical time scales for the stability of the SRS and DRS as well as for the azimuthal drift velocity of the flow structures inside the cylinder. Thus, the combination of nonlinear dimension reduction and dynamical systems tools enables to gain insight into turbulent flows without relying on model assumptions.
We perform a bifurcation analysis of the steady state solutions of Rayleigh--Benard convection with no-slip boundary conditions in two dimensions using a numerical method called deflated continuation. By combining this method with an initialisation s trategy based on the eigenmodes of the conducting state, we are able to discover multiple solutions to this non-linear problem, including disconnected branches of the bifurcation diagram, without the need of any prior knowledge of the dynamics. One of the disconnected branches we find contains a s-shape bifurcation with hysteresis, which is the origin of the flow pattern that may be related to the dynamics of flow reversals in the turbulent regime. Linear stability analysis is also performed to analyse the steady and unsteady regimes of the solutions in the parameter space and to characterise the type of instabilities.
For rapidly rotating turbulent Rayleigh--Benard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like $Ra^{1/4}Ek^{2/3}$ where the Ekman number $Ek$ decreases with increasing rotation rate.
We analyse the nonlinear dynamics of the large scale flow in Rayleigh-Benard convection in a two-dimensional, rectangular geometry of aspect ratio $Gamma$. We impose periodic and free-slip boundary conditions in the streamwise and spanwise directions , respectively. As Rayleigh number Ra increases, a large scale zonal flow dominates the dynamics of a moderate Prandtl number fluid. At high Ra, in the turbulent regime, transitions are seen in the probability density function (PDF) of the largest scale mode. For $Gamma = 2$, the PDF first transitions from a Gaussian to a trimodal behaviour, signifying the emergence of reversals of the zonal flow where the flow fluctuates between three distinct turbulent states: two states in which the zonal flow travels in opposite directions and one state with no zonal mean flow. Further increase in Ra leads to a transition from a trimodal to a unimodal PDF which demonstrates the disappearance of the zonal flow reversals. On the other hand, for $Gamma = 1$ the zonal flow reversals are characterised by a bimodal PDF of the largest scale mode, where the flow fluctuates only between two distinct turbulent states with zonal flow travelling in opposite directions.
Non-Oberbeck-Boussinesq (NOB) effects on the flow organization in two-dimensional Rayleigh-Benard turbulence are numerically analyzed. The working fluid is water. We focus on the temperature profiles, the center temperature, the Nusselt number, and o n the analysis of the velocity field. Several velocity amplitudes (or Reynolds numbers) and several kinetic profiles are introduced and studied; these together describe the various features of the rather complex flow organization. The results are presented both as functions of the Rayleigh number Ra (with Ra up to 10^8) for fixed temperature difference (Delta) between top and bottom plates and as functions of Delta (non-Oberbeck-Boussinesqness) for fixed Ra with Delta up to 60 K. All results are consistent with the available experimental NOB data for the center temperature Tc and the Nusselt number ratio Nu_{NOB}/Nu_{OB} (the label OB meaning that the Oberbeck-Boussinesq conditions are valid). Beyond Ra ~ 10^6 the flow consists of a large diagonal center convection roll and two smaller rolls in the upper and lower corners. In the NOB case the center convection roll is still characterized by only one velocity scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا