ترغب بنشر مسار تعليمي؟ اضغط هنا

Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection

51   0   0.0 ( 0 )
 نشر من قبل Stephen Morris
 تاريخ النشر 1993
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experiments on convection patterns in a cylindrical cell with a large aspect ratio. The fluid had a Prandtl number of approximately 1. We observed a chaotic pattern consisting of many rotating spirals and other defects in the parameter range where theory predicts that steady straight rolls should be stable. The correlation length of the pattern decreased rapidly with increasing control parameter so that the size of a correlated area became much smaller than the area of the cell. This suggests that the chaotic behavior is intrinsic to large aspect ratio geometries.



قيم البحث

اقرأ أيضاً

We use a quantitative topological characterization of complex dynamics to measure geometric structures. This approach is used to analyze the weakly turbulent state of spiral defect chaos in experiments on Rayleigh-Benard convection. Different attract ors of spiral defect chaos are distinguished by their homology. The technique reveals pattern asymmetries that are not revealed using statistical measures. In addition we observe global stochastic ergodicity for system parameter values where locally chaotic dynamics has been observed previously.
In this numerical study on two-dimensional Rayleigh-Benard convection we consider $10^7 leq Ra leq 10^{12}$ in aspect ratio $0.23 leq Gamma leq 13$ samples. We focus on several cases. First we consider small aspect ratio cells, where at high Ra numbe r we find a sharp transition from a low Ra number branch towards a high Ra number branch, due to changes in the flow structure. Subsequently, we show that the influence of the aspect ratio on the heat transport decreases with increasing aspect ratio, although even at very large aspect ratio of $Gammaapprox10$ variations up to 2.5% in the heat transport as a function of Gamma are observed. Finally, we observe long-lived transients up to at least $Ra=10^9$, as in certain aspect ratio cells we observe different flow states that are stable for thousands of turnover times.
We use nonlinear signal processing techniques, based on artificial neural networks, to construct an empirical mapping from experimental Rayleigh-Benard convection data in the quasiperiodic regime. The data, in the form of a one-parameter sequence of Poincare sections in the interior of a mode-locked region (resonance horn), are indicative of a complicated interplay of local and global bifurcations with respect to the experimentally varied Rayleigh number. The dynamic phenomena apparent in the data include period doublings, complex intermittent behavior, secondary Hopf bifurcations, and chaotic dynamics. We use the fitted map to reconstruct the experimental dynamics and to explore the associated local and global bifurcation structures in phase space. Using numerical bifurcation techniques we locate the stable and unstable periodic solutions, calculate eigenvalues, approximate invariant manifolds of saddle type solutions and identify bifurcation points. This approach constitutes a promising data post-processing procedure for investigating phase space and parameter space of real experimental systems; it allows us to infer phase space structures which the experiments can only probe with limited measurement precision and only at a discrete number of operating parameter settings.
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$ are observed with $gammaapprox 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a single updraft absent significant horizontal structure, and characterized by the larger maximal wavenumber.
Using direct numerical simulations, we study the statistical properties of reversals in two-dimensional Rayleigh-Benard convection for infinite Prandtl number. We find that the large-scale circulation reverses irregularly, with the waiting time betwe en two consecutive genuine reversals exhibiting a Poisson distribution on long time scales, while the interval between successive crossings on short time scales shows a power law distribution. We observe that the vertical velocities near the sidewall and at the center show different statistical properties. The velocity near the sidewall shows a longer autocorrelation and $1/f^2$ power spectrum for a wide range of frequencies, compared to shorter autocorrelation and a narrower scaling range for the velocity at the center. The probability distribution of the velocity near the sidewall is bimodal, indicating a reversing velocity field. We also find that the dominant Fourier modes capture the dynamics at the sidewall and at the center very well. Moreover, we show a signature of weak intermittency in the fluctuations of velocity near the sidewall by computing temporal structure functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا