ﻻ يوجد ملخص باللغة العربية
The results of the lowest frequency spectral survey carried out toward a molecular cloud and sensitive observations at selected frequencies are presented. The entire Arecibo C-band (4--6 GHz) was observed towards the cyanopolyyne peak of TMC-1 with an rms sensitivity of about 17--18 mK (about 2--2.5 mJy). In addition, a number of selected frequency ranges within the C-band and X-band (8--10 GHz) were observed with longer integration times and rms sensitivities 7--8 mK (about 2 mJy) or higher. In the spectral scan itself, already--known H2CO and HC5N lines were detected. However, in more sensitive observations at selected frequencies, lines of C2S, C3S, C4H, C4H2, HC3N and its 13C substituted isotopic species, HC5N, HC7N, and HC9N were found, about half of them detected for the first time. The rotational temperatures of the detected molecules fall in the range 4--9 K. Cyanopolyyne column densities vary from 5.6x10^{13} cm^{-2} for HC5N to 2.7x10^{12} cm^{-2} for HC9N. Our results show that for molecular observations at low frequencies (4--10 GHz) to be useful for studying dark clouds, the sensitivity must be of the order of 5--10 mK or better. To date, observations at around 10 GHz have been more productive than those at lower frequencies.
The complete set of data from the Tenerife 10 GHz (8 degree FWHM) twin-horn, drift scan experiment is described. These data are affected by both long-term atmospheric baseline drifts and short term noise. A new maximum entropy procedure, utilising th
We report the detection and analysis of a radio flare observed on 17 April 2014 from Sgr A* at $9$ GHz using the VLA in its A-array configuration. This is the first reported simultaneous radio observation of Sgr A* across $16$ frequency windows betwe
This paper presents a low-loss optically-controlled inline RF switch suitable for L- and S-band applications. Under 1.5 W laser power, the switch exhibits a measured ON-state insertion loss of less than 0.33 dB and return loss better than 20 dB acros
The aim of this study is to investigate the physical properties of molecular envelopes of planetary nebulae in their earliest stages of evolution. Using the 100m telescope at Effelsberg, we have undertaken a high sensitivity discrete source survey fo
We report a dual-band observation at 223 and 654 GHz (460 micron) toward an ultracompact (UC) HII region, G240.31+0.07, with the Submillimeter Array. With a beam size of 15 X 08, the dust continuum emission is resolved into two clumps, with clump A c