ﻻ يوجد ملخص باللغة العربية
We report a dual-band observation at 223 and 654 GHz (460 micron) toward an ultracompact (UC) HII region, G240.31+0.07, with the Submillimeter Array. With a beam size of 15 X 08, the dust continuum emission is resolved into two clumps, with clump A coincident well with an H2O maser and the UC HII region. The newly discovered clump, B, about 13 (~8.3 X 10^3 AU) to the southwest of clump A, is also associated with H2O masers and may be a more recent star-forming site. The continuum flux densities imply an opacity spectral index of beta = 1.5 +- 0.3, suggestive of a value lower than the canonical 2.0 found in the interstellar medium and in cold, massive cores. The presence of hot (~100 K) molecular gas is derived by the brightness ratio of two H2CO lines in the 223 GHz band. A radial velocity difference of 2.5 +- 0.4 km/s is found between the two clumps in C18O (6-5) emission. The total (nebular and stellar) mass of roughly 58 Msun in the central region is close to, but not by far larger than, the minimum mass required for the two clumps to be gravitationally bound for binary rotation. Our continuum data do not suggest a large amount of matter associated with the H2 knots that were previously proposed to arise from a massive disk or envelope.
We present high-resolution (~2.5) observations of 12CO J=6-5 towards the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect 12CO J=6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the cent
Discovered in 1995 at the Caltech Submillimeter Observatory (CSO), the vibrationally-excited water maser line at 658 GHz (455 micron) is seen in oxygen-rich giant and supergiant stars. Because this maser can be so strong (up to thousands of Janskys),
We report on the results of a Submillimeter Array interferometric observation of the proto-planetary nebula CRL 618 in the 12CO J=6-5 line. With the new capability of SMA enabling us to use two receivers at a time, we also observed simultaneously in
Phase closure at 682 GHz and 691 GHz was first achieved using three antennas of the Submillimeter Array (SMA) interferometer located on Mauna Kea, Hawaii. Initially, phase closure was demonstrated at 682.5 GHz on Sept. 19, 2002 using an artificial gr
We present the first pulsar parallaxes measured with phase-referenced pulsar VLBI observations at 5 GHz. Due to the steep spectra of pulsars, previous astrometric measurements have been at lower frequencies. However, the strongest pulsars can be obse