ﻻ يوجد ملخص باللغة العربية
This paper presents a low-loss optically-controlled inline RF switch suitable for L- and S-band applications. Under 1.5 W laser power, the switch exhibits a measured ON-state insertion loss of less than 0.33 dB and return loss better than 20 dB across the band. The measured OFF-state isolation ranges from 27 dB at 1 GHz to 17 dB at 4 GHz. The switch comprises a single silicon chiplet excited by a 915-nm laser fiber which creates electron-hole pairs, thereby exciting the ON-state silicon plasma. An optical fiber is guided through the bottom of the RF substrate to illuminate the chiplet, which bridges a 1.075-mm microstrip line gap. To the best of our knowledge, this is the lowest-loss silicon plasma switch demonstrated today.
The temperature of a nonneutral plasma confined in a Penning-Malmberg trap can be determined by slowly lowering one side of the traps electrostatic axial confinement barrier; the temperature is inferred from the rate at which particles escape the tra
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f
Superconducting Radio Frequency (SRF) cavities performance preservation is crucial, from vertical test to accelerator operation. Field Emission (FE) is still one of the performance limiting factors to overcome and plasma cleaning has been proven succ
There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an
Memristors have emerged as key candidates for beyond-von-Neumann neuromorphic or in-memory computing owing to the feasibility of their ultrahigh-density three-dimensional integration and their ultralow energy consumption. A memristor is generally a t