ﻻ يوجد ملخص باللغة العربية
We show how the minimal free resolution of a set of $n$ points in general position in projective space of dimension $n-2$ explicitly determines structure constants for a ring of rank $n$. This generalises previously known constructions of Levi-Delone-Faddeev and Bhargava in the cases $n=3,4,5$.
Let $R$ be a finite ring and define the hyperbola $H={(x,y) in R times R: xy=1 }$. Suppose that for a sequence of finite odd order rings of size tending to infinity, the following square root law bound holds with a constant $C>0$ for all non-trivial
We develop algorithms to turn quotients of rings of rings of integers into effective Euclidean rings by giving polynomial algorithms for all fundamental ring operations. In addition, we study normal forms for modules over such rings and their behavio
Under reasonable assumptions, a group action on a module extends to the minimal free resolutions of the module. Explicit descriptions of these actions can lead to a better understanding of free resolutions by providing, for example, convenient expres
Let $E$ be an elliptic curve over $Q$. It is well known that the ring of endomorphisms of $E_p$, the reduction of $E$ modulo a prime $p$ of ordinary reduction, is an order of the quadratic imaginary field $Q(pi_p)$ generated by the Frobenius element
We construct a minimal free resolution of the semigroup ring k[C] in terms of minimal resolutions of k[A] and k[B] when <C> is a numerical semigroup obtained by gluing two numerical semigroups <A> and <B>. Using our explicit construction, we compute