ﻻ يوجد ملخص باللغة العربية
We develop algorithms to turn quotients of rings of rings of integers into effective Euclidean rings by giving polynomial algorithms for all fundamental ring operations. In addition, we study normal forms for modules over such rings and their behavior under certain quotients. We illustrate the power of our ideas in a new modular normal form algorithm for modules over rings of integers, vastly outperforming classical algorithms.
Let O be the ring of integers of a number field K. For an O-algebra R which is torsion free as an O-module we define what we mean by a Lambda_O-ring structure on R. We can determine whether a finite etale K-algebra E with Lambda_O-ring structure has
We present a variation of the modular algorithm for computing the Hermite normal form of an $mathcal O_K$-module presented by Cohen, where $mathcal O_K$ is the ring of integers of a number field $K$. An approach presented in (Cohen 1996) based on red
Computing endomorphism rings of supersingular elliptic curves is an important problem in computational number theory, and it is also closely connected to the security of some of the recently proposed isogeny-based cryptosystems. In this paper we give
We show how the minimal free resolution of a set of $n$ points in general position in projective space of dimension $n-2$ explicitly determines structure constants for a ring of rank $n$. This generalises previously known constructions of Levi-Delone-Faddeev and Bhargava in the cases $n=3,4,5$.
One of the many number theoretic topics investigated by the ancient Greeks was perfect numbers, which are positive integers equal to the sum of their proper positive integral divisors. Mathematicians from Euclid to Euler investigated these mysterious