ﻻ يوجد ملخص باللغة العربية
Let $E$ be an elliptic curve over $Q$. It is well known that the ring of endomorphisms of $E_p$, the reduction of $E$ modulo a prime $p$ of ordinary reduction, is an order of the quadratic imaginary field $Q(pi_p)$ generated by the Frobenius element $pi_p$. When the curve has complex multiplication (CM), this is always a fixed field as the prime varies. However, when the curve has no CM, very little is known, not only about the order, but about the fields that might appear as algebra of endomorphisms varying the prime. The ring of endomorphisms is obviously related with the arithmetic of $a_p^2-4p$, the discriminant of the characteristic polynomial of the Frobenius element. In this paper, we are interested in the function $pi_{E,r,h}(x)$ counting the number of primes $p$ up to $x$ such that $a_p^2-4p$ is square-free and in the congruence class $r$ modulo $h$. We give in this paper the precise asymptotic for $pi_{E,r,h}(x)$ when averaging over elliptic curves defined over the rationals, and we discuss the relation of this result with the Lang-Trotter conjecture, and with some other problems related to the curve modulo $p$.
Let $R$ be a finite ring and define the hyperbola $H={(x,y) in R times R: xy=1 }$. Suppose that for a sequence of finite odd order rings of size tending to infinity, the following square root law bound holds with a constant $C>0$ for all non-trivial
Let $mathcal{R}$ be a finite set of integers satisfying appropriate local conditions. We show the existence of long clusters of primes $p$ in bounded length intervals with $p-b$ squarefree for all $b in mathcal{R}$. Moreover, we can enforce that the
The discriminant of a polynomial of the form $pm x^n pm x^m pm 1$ has the form $n^n pm m^m(n-m)^{n-m}$ when $n,m$ are relatively prime. We investigate when these discriminants have prime power divisors. We explain several symmetries that appear in th
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD
Let d1 and d2 be discriminants of distinct quadratic imaginary orders O_d1 and O_d2 and let J(d1,d2) denote the product of differences of CM j-invariants with discriminants d1 and d2. In 1985, Gross and Zagier gave an elegant formula for the factoriz