ﻻ يوجد ملخص باللغة العربية
How can model designers turn task instructions into effective prompts for language models? Backed by extensive empirical analysis on GPT3, we observe important features for successful instructional prompts, and propose several reframing techniques for model designers to create such prompts. For example, a complex task can be decomposed into multiple simpler tasks. We experiment over 12 NLP tasks across 6 diverse categories (question generation, classification, etc.). Our results show that reframing improves few-shot learning performance by 14% while reducing sample complexity over existing few-shot baselines. The performance gains are particularly important on large language models, such as GPT3 where tuning models or prompts on large datasets is not feasible. Furthermore, we observe that such gains are not limited to GPT3; the reframed tasks remain superior over raw instructions across different model architectures, underscoring the cross-model generality of these guidelines. We hope these empirical-driven techniques will pave way for more effective ways to prompt LMs in future.
Framing involves the positive or negative presentation of an argument or issue depending on the audience and goal of the speaker (Entman 1983). Differences in lexical framing, the focus of our work, can have large effects on peoples opinions and beli
Tracking entities throughout a procedure described in a text is challenging due to the dynamic nature of the world described in the process. Firstly, we propose to formulate this task as a question answering problem. This enables us to use pre-traine
When primed with only a handful of training samples, very large pretrained language models such as GPT-3, have shown competitive results when compared to fully-supervised fine-tuned large pretrained language models. We demonstrate that the order in w
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsk
Prompting language models (LMs) with training examples and task descriptions has been seen as critical to recent successes in few-shot learning. In this work, we show that finetuning LMs in the few-shot setting can considerably reduce the need for pr