ﻻ يوجد ملخص باللغة العربية
We consider the inverse source problems with multi-frequency sparse near field measurements. In contrast to the existing near field operator based on the integral over the space variable, a multi-frequency near field operator is introduced based on the integral over the frequency variable. A factorization of this multi-frequency near field operator is further given and analysed. Motivated by such a factorization, we introduce a multi-frequency sampling method to reconstruct the source support. Its theoretical foundation is then derived from the properties of the factorized operators and a properly chosen point spread function. Numerical examples are provided to illustrate the multi-frequency sampling method with sparse near field measurements. Finally we briefly discuss how to extend the near field case to the far field case.
The randomized sparse Kaczmarz method was recently proposed to recover sparse solutions of linear systems. In this work, we introduce a greedy variant of the randomized sparse Kaczmarz method by employing the sampling Kaczmarz-Motzkin method, and pro
This paper investigates the inverse scattering problems using sampling methods with near field measurements. The near field measurements appear in two classical inverse scattering problems: the inverse scattering for obstacles and the interior invers
In this study, a multi-grid sampling multi-scale (MGSMS) method is proposed by coupling with finite element (FEM), extended finite element (XFEM) and molecular dynamics (MD) methods.Crack is studied comprehensively from microscopic initiations to mac
We analyze sparse frame based regularization of inverse problems by means of a diagonal frame decomposition (DFD) for the forward operator, which generalizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholdi
We introduce a new method for the numerical approximation of time-harmonic acoustic scattering problems stemming from material inhomogeneities. The method works for any frequency $omega$, but is especially efficient for high-frequency problems. It is